Телевизионные и спутниковые антенны

         

Основные параметры электромагнитных волн


Что собой представляет электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электромагнитное поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимно связаны.

Основным источником спектра электромагнитных волн является звезда Солнце. Часть спектра электромагнитных волн видит глаз человека. Этот спектр лежит в пределах 380...780 нм (рис. 1.1). В области видимого спектра глаз ощушает свет по-разному. Электромагнитные колебания с различной длиной волн вызывают ощущение света с различной окраской.

Часть спектра электромагнитных волн используется для целей радиотелевизионного вешания и связи. Источник электромагнитных волн — провод (антенна), в котором происходит колебание электрических зарядов. Процесс формирования полей, начавшийся вблизи провода, постепенно, точку за точкой, захватывает все пространство. Чем выше частота переменного тока, проходящего по проводу и порождающего электрическое или магнитное поле, тем интенсивнее создаваемые проводом радиоволны заданной длины.

Электромагнитные волны имеют следующие основные характеристики.

1. Длина волны lв, — кратчайшее расстояние между двумя точками в пространстве, на котором фаза гармонической электромагнитной волны меняется на 360°. Фаза — это состояние (стадия) периодического процесса (рис. 1.2).


В наземном телевизионном вешании используются метровые (MB) и дециметровые волны (ДМВ), в спутниковом — сантиметровые волны (СМ). По мере заполнения частотного диапазона СМ будет осваиваться диапазон миллиметровых волн (Ка-bаnd).

2. Период колебания волны Т— время, в течение которого происходит одно полное изменение напряженности поля, т. е. время, за которое точка радиоволны, имеющая какую-то фиксированную фазу, проходит путь, равный длине волны lв.




3. Частота колебаний электромагнитного поля F (число колебаний поля в секунду) определяется по формуле

F=1/T, a T=1/F

Единицей измерения частоты является герц (Гц) — частота, при которой совершается одно колебание в секунд . В спутниковом вещании приходится иметь дело с очень высокими частотами электромагнитных колебаний измеряемых в гигагерцах.

Для спутникового непосредственного телевизионного вещания (СНТВ) по линии Космос — Земля используются диапазон C-band low и часть диапазона Кu (10,7...12,75 ГГи). Верхняя часть этих диапазонов применяется для передачи информации по линии Земля — Космос (табл. 1.1).



4. Скорость распространения волны Сскорость последовательного распространения волны от источника энергии (антенны).

Скорость распространения радиоволн в свободном пространстве (вакууме) постоянна и равна скорости света С= 300 000 км/с. Несмотря на такую высокую скорость, электромагнитная волна по линии Земля — Космос — Земля проносится за время 0,24 с. На земле радиотелевизионные передачи можно практически мгновенно принимать в любой точке. При распространении в реальном пространстве, например -в воздухе, скорость движения радиоволны зависит от свойств среды, она обычно меньше С на величину коэффициента преломления среды.

Частота электромагнитных волн F, скорость их распространения С и длина волны л связаны соотношением

lв=C/F, а так как F=1/T , то lв=С*T.

Подставляя значение скорости С= 300 000 км/с в последнюю формулу, получаем

lв(м)=3*10^8/F(м/c*1/Гц)

Для больших значений частот длину волны электромагнитного колебания можно определить по формуле lв(м)=300/F(МГц) Зная длину волны электромагнитного колебания, частоту определяют по формуле F(МГц)=300/lв(м)

5. Поляризация радиоволн. Электрическая и магнитная составляющие электромагнитного поля соответственно характеризуются векторами Е и Н, которые показывают значение напряженностей полей и их направление. Поляризацией называется ориентировка вектора электрического поля Е волны относительно поверхности земли (рис. 1.2).



Вид поляризации радиоволн определяется ориентировкой (положением) передающей антенны относительно поверхности земли. Как в наземном, так и в спутниковом телевидении применяется линейная поляризация, т. е. горизонтальная Н и вертикальная V (рис. 1.3).

Радиоволны с горизонтальным вектором электрического поля называют горизонтально поляризованными, а с вертикальным — вертикально поляризованными. Плоскость поляризации у последних волн вертикальна, а вектор Н (см. рис. 1.2) находится в горизонтальной плоскости.

Если передающая антенна установлена горизонтально над поверхностью земли, то электрические силовые линии поля также будут расположены горизонтально. В этом случае поле наведет наибольшую электродвижущую силу (ЭДС) в гори-





Рис 1.4. Круговая поляризация радиоволн:

LZ— левая; RZ— правая

зонтально расположенной приемной антенне. Следовательно, при Н поляризации радиоволн приемную антенну необходимо ориентировать горизонтально. При этом приема радиоволн на вертикально расположенную антенну теоретически не будет, так как наведенная в антенне ЭДС равна нулю. И наоборот, при вертикальном положении передающей антенны приемную антенну также необходимо расположить вертикально, что позволит получить в ней наибольшую ЭДС.

При телевизионном вещании с искусственных спутников Земли (ИСЗ) кроме линейных поляризаций широко используется круговая поляризация. Связано это, как ни странно, с теснотой в эфире, так как на орбитах находится большое количество спутников связи и ИСЗ непосредственного (прямого) телевизионного вещания.

Часто в таблицах параметров спутников дают сокращенное обозначение вида круговой поляризации — L и R. Круговую поляризацию радиоволн создает, например, коническая спираль на облучателе передающей антенны. В зависимости от направления намотки спирали круговая поляризация оказывается левой или правой (рис. 1.4).

Соответственно в облучателе наземной антенны спутникового телевидения должен быть установлен поляризатор, который реагирует на круговую поляризацию радиоволн, излучаемых передающей антенной ИСЗ.



Рассмотрим вопросы модуляции высокочастотных колебаний и их спектр при передаче с ИСЗ. Целесообразно это сделать в сравнении с наземными вещательными системами.

Разнос между несущими частотами сигналов изображения и звукового сопровождения составляет 6,5 МГц, остаток нижней боковой полосы (слева от несущей изображения) — 1,25 МГц, а ширина канала звукового сопровождения — 0,5 МГц

(рис. 1.5). С учетом этого суммарная ширина телевизионного канала принята равной 8,0 МГц (по стандартам D и К, принятым в странах СНГ).

Передающая телевизионная станция имеет в своем составе два передатчика. Один из них передает электрические сигналы изображения, а другой — звуковое сопровождение соответственно на разных несущих частотах. Изменение какого-то параметра несущего высокочастотного колебания (мощности, частоты, фазы и др.) под воздействием колебаний низкой частоты называется модуляцией. Используются два основных вида модуляции: амплитудная (AM) и частотная (ЧМ). В телевидении сигналы изображения передаются с AM, а звуковое сопровождение — с ЧМ. После модуляции электрические колебания усиливаются по мощности, затем поступают в передающую антенну и излучаются ею в пространство (эфир) в виде радиоволн.

8 наземном телевизионном вещании по ряду причин невозможно применить ЧМ для передачи сигналов изображения. На СМ места в эфире значительно больше и такая возможность существует. В результате спутниковый канал (транспондер) занимает полосу частот в 27 МГц.

Преимущества частотной модуляции сигнала поднесущей:

меньшая по сравнению с AM чувствительность к помехам и шумам, низкая чувствительность к нелинейности динамических характеристик каналов передачи сигналов, а также стабильность передачи на далекие расстояния. Данные характеристики объясняются постоянством уровня сигнала в каналах передачи, возможностью проведения частотной коррекции предыскажений, благоприятно влияющих на отношение сигнал/шум, благодаря чему ЧМ можно значительно снизить мощность передатчика при передаче информации на одно и то же расстояние. Например, в наземных вещательных системах для передачи сигналов изображения на одной и той же телевизионной станции используются передатчики в 5 раз большей мощности, чем для передачи сигналов звукового сопровождения.




Спутниковые системы цветного телевидения


Система цветного телевидения — комплекс характеристик и параметров, определяющих особенности конкретного стандарта цветного телевизионного вещания. Система определяет способ передачи полной информации о цветности и яркости изображения передаваемого объекта от передающей телевизионной камеры до приемника.

В телевизионном вешании на поверхности Земли используются три системы цветного телевидения. Американская система NTSC (National Television System Committee — национальный комитет телевизионной системы) разработана и внедрена в США в 1953 г. Это первая система цветного телевидения, нашедшая практическое применение. Западногерманская система PAL (Phase Alternation Line — изменение фазы от строки к строке) разработана в ФРГ в 1963 г. в целях устранения недостатков системы NTSC. Советско-французская система SECAM (Sequence de Couleurs Avec Memoire — последовательная передача цветов с запоминанием) используется с 1967 г. В странах СНГ применяется вариант системы SECAM-IIIБ.

Существенная и принципиальная разница в устройстве систем цветного телевидения заключается в способах передачи цветной телевизионной информации от передающей камеры к приемнику. Поэтому под выражением «система цветного телевидения» в настоящее время понимают метод передачи сигнала по центральной части тракта цветного телевидения, т. е. способ передачи сигнала цветности. В основе построения всех систем цветного телевидения лежат следующие физические процессы.

1. Оптическое разложение передаваемого многоцветного изображения на три одноцветных изображения в основных цветах — красном R, зеленом G и синем В.

2. Преобразование трех одноцветных изображений R, G и В в электрические сигналы Er, Еg и Eb.

3. Образование электрического сигнала яркости (сигнал черно-белого изображения) Еу и так называемых цветоразностных сигналов Er-у Eg-y и Eb-y

Вычитание из сигнала основного цвета сигнала яркости формально означает, что цветоразностный сигнал содержит информацию только о цветности, но не о яркости. Поэтому главной особенностью цветоразностных сигналов является то, что на черно-белых и серых местах изображения они равны нулю, а это, в свою очередь, устраняет мелкоструктурную сетку от поднесушей частоты (помеху) на экране кинескопа.




Из трех составляющих R, G и В наибольшую интенсивность (59%) и широкую полосу частот имеет зеленый сигнал G. В этом смысле он очень близок к яркостному сигналу Y. Иными словами, если на черно-белый телевизор подать сигнал ЕС, то изображение на его экране будет довольно близко к изображению, получаемому от яркостного сигнала Еу. Сигналы Er и Еb требуют значительно меньшей полосы частот, чем сигнал Еg имеют меньшую интенсивность (соответственно 39 и 11%). Поэтому выгодно не передавать самый интенсивный и широкополосный сигнал из трех цветоделенных сигналов. Во всех системах цветного телевидения при передаче формируют только красный Еr-y и синий Eb-y цветоразностные сигналы, а зеленый сигнал Еg-у восстанавливается в самом телевизоре.

4. Передача и прием трех электрических сигналов изображения Еу, Er-y и Eb-y по линиям связи.

5. Обратное преобразование электрических сигналов Еу, Er-y и Eb-y и выделение из них сигналов Еу, Er, Еg и Еb.

6. Преобразование электрических сигналов Еу, Er, Еg и Еb в три одноцветных оптических изображения — красного R, зеленого G и синего В цветов.

7. Смешение одноцветных составляющих R, G и В в одно многоцветное изображение.

В спутниковом телевизионном вешании используются системы NTSC, PAL и SECAM (аналоговые), существенно отличающиеся от наземных. Для того чтобы оценить преимущества «чисто» спутниковых систем цветного телевидения, целесообразно изучить принципы кодирования сигнала цветности в аналоговых системах телевизионного вещания.

В системах NTSC, PAL и SECAM используют разные по частоте поднесущие и виды их модуляции цветоразностными сигналами, что и является основным отличием одной системы от другой.



В системе SECAM постоянно передается только сигнал яркости, а в каждой строке — один из сигналов цветности на поднесущей. Например, в 1-й строке передается красный сигнал, во 2-й — синий, в 3-й снова красный и т. д. Поэтому систему SECAM называют последовательно-одновременной (рис. 2.1).

Для модуляции поднесушей цветоразностными сигналами используется частотная модуляция. Значение поднесущей постоянно лишь в состоянии покоя (при отсутствии модуляции), и точно уложить составляющие спектра сигнала цветности в промежутки между гармониками сигнала яркости не представляется возможным.



Поднесущие частоты находятся внутри спектра яркостного сигнала, поэтому при приеме цветного изображения на экране телевизора становятся заметными помехи от под-несущих. Эти помехи особенно интенсивны на насыщенных элементах изображения и на границах цветовых переходов. Они просматриваются в виде чередующихся вдоль строк мелких светлых и темных участков. Следовательно, в телевизионном приемнике необходимо предусмотреть значительное ослабление в области частот, где расположены сигналы цветности. Режекция (вырезание) части спектра сигнала в области поднесущих частот осуществляется с помощью полосовых фильтров. При наличии эффективно действующих режекторных фильтров цветное изображение воспри-





нимается как более «мягкое» — без видимых помех от под-несущих и без разнояркости строк (рис. 2.2).

Еще одним недостатком названных систем цветного телевидения являются перекрестные искажения между каналами цветности и яркости или более коротко помехи из «яркости в цветность». Они проявляются в виде окрашенного муара, цвет которого зависит от содержащейся в мешающем сигнале основной частоты.

В аналоговых системах также существуют перекрестные искажения между каналами цветности, образующиеся в результате их паразитных связей. В системе SECAM возникает дополнительная помеха из-за биений поднесущих частот сигналов цветности. Она имеет вид структуры, плывущей вверх по экрану, и создает искажения насыщенности и цветового тона.

Рассмотрим основные различия систем цветного телевидения NTSC и PAL сравнительно с системой SECAM.

Системы NTSC и PAL — одновременные, так как в каждый момент времени они передают все три сигнала: яркостный и два цветоразностных. Однако вместо двух поднесущих используется одна с частотой 3,58 МГц в системе NTSC и 4,43 МГц в системе PAL.

Модуляция по амплитуде поднесущей двумя цветоразностными сигналами производится методом квадратурной модуляции, при которой поднесущая делится на две составляющие, сдвинутые одна относительно другой по фазе

на 90°. Одна составляющая модулируется красным цвето-разностным сигналом, другая — синим. При этом несущая частота промодулированных сигналов полностью подавляется и остаются лишь боковые полосы частот.



Для передачи информации о цвете в системе NTSC применяются не цветоразностные сигналы Еr-у и Eb-y, а их линейные комбинации — сигналы Eq и Еj. Это вызвано тем, что неискаженная и независимая передача двух сигналов, передаваемых методом квадратурной модуляции, возможна при сохранении квадратуры, т. е. сдвига между сигналами, равного 90°.

Номинальная ширина полосы частот яркостного сигнала составляет 4,2 МГц. Цветовая поднесущая fц модулируется двумя цветоразностными сигналами Eq и Еj. Сигнал Eq передается в полосе видеочастот 0...0,6 МГц и занимает относительно цветовой поднесущей обе боковые полосы. Сигнал Ej передается в полосе видеочастот 0..1.4 МГц с частично подавленной верхней боковой полосой (рис. 2.3).

Система цветного телевидения PAL, в своей основе содержащая все идеи американской системы NTSC, является дальнейшим ее усовершенствованием и отличается оригинальным способом устранения фазовых искажений. Достигается это тем, что поднесущая, модулированная красным цветоразностным сигналом, изменяет свою фазу на обратную при переходе с одной строки к следующей. Другая составляющая, модулированная синим цветоразностным сигналом, имеет постоянную фазу. Компенсация фазовых



искажений происходит путем сложения сигналов двух соседних строк, фазовые сдвиги которых имеют одинаковую величину, но противоположные знаки.

Таким образом, фазовые искажения результирующего цветового сигнала, независимо от причины их появления, изменяясь на противоположные в каждой следующей строке и соответственно в каждом следующем кадре, всегда взаимно компенсируются. В итоге цветовой тон передаваемого изображения сохраняется. В этом заключается основное преимущество системы PAL по сравнению с системой NTSC.

В результате изложенного можно сделать следующие выводы. В системах NTSC, PAL и SECAM с целью передачи полной информации в одном канале используется принцип наложения спектра сигнала цветности на поднесущей частоте на спектр сигнала яркости. В телевизионном приемнике практически невозможно разделить эти спектры без взаимных перекрестных искажений. К тому же снижается четкость изображения (различимость мелких деталей) из-за режекции части спектра сигнала черно-белого изображения в участке размещения поднесущей сигнала цветности.



Аналоговые методы передачи цветного изображения накладывают определенные ограничения на качество сигнала, что существенно снижает возможности развития телевизионного вешания. Одной из главных причин этих ограничений является низкая помехозащищенность аналогового сигнала, так как при прохождении всего телевизионного тракта он подвергается воздействию шумов и других помех. А вещательная телевизионная сеть представляет собой очень длинную цепь устройств преобразования и передачи сигналов. Особенно это относится к системам спутникового телевидения.

Полный цветовой сигнал для передачи по спутниковому телевидению создается абсолютно так же, как изложено выше для наземного телевизионного вещания. Однако в спутниковом вещании существует возможность улучшения качества передаваемого и принимаемого сигналов в связи с использованием частотной модуляции несущей частоты передатчика изображения.

Преимуществами частотной модуляции несушей частоты передатчика по сравнению с амплитудной является меньшая чувствительность к помехам и шумам, низкая чувствительность к нелинейности динамических характеристик каналов передачи сигналов, а также стабильность передачи на большие расстояния. Эти преимущества объясняются постоянством уровня в каналах передачи, возможностью проведения частотной коррекции предыскажений, положительно влияющих на отношение сигнал/шум.

Благодаря применению частотной модуляции несушей частоты телевизионного передатчика, ширине полосы канала передачи со спутника в 27 МГц качество изображения аналоговых систем оказывается выше, чем при наземном телевизионном вешании.

В настоящее время в спутниковом телевидении происходит переход от аналоговых на более совершенные системы передачи цветных телевизионных сигналов, которые основаны на принципе временного уплотнения сигналов яркости, цветности и преобразованных в так называемую «цифровую форму». Промежуточным звеном здесь является комбинированный аналогоцифровой стандарт, получивший название MAC (Multiplexed Analogue Components — система уплотнения аналоговых компонент).



Практическое применение получили несколько вариантов системы MAC. Для телевизионных систем стандартов разложения изображения на 625 строк и 50 полей, принятых в странах Западной Европы, Беларуси, России, на Украине и др., используется система D2-MAC. D2 означает дуобинарное (трехуровневое) кодирование. В отличие от бинарного (двухуровневого) в нем логической «1» соответствует импульс положительной или отрицательной полярности. Логическому «0» соответствует импульс с нулевой амплитудой.

Систему D2-MAC можно разделить на две части: аналоговую и цифровую. Аналоговые сигналы яркости и цветности передаются в течение активной строки в сжатом во времени виде, а цифровая часть сигнала (звуковое сопровождение, сигналы синхронизации, телетекст и др.) объединены в пакеты, передаваемые в течение обратного хода разверток по строкам и полям.

Начальную часть строки (17,2 мкс) занимает один из цветоразностных сигналов Еr-у или Eb-y которые передаются поочередно через строку. Далее следует яркостная составляющая видеосигнала, которая занимает 34,4 мкс (рис. 2.4).

Общим для всех вариантов систем MAC является способ передачи аналоговых сигналов яркости и цветности с предварительным сжатием временного масштаба этих сигналов:

для строки яркостного сигнала — в 1,5 раза, для строк сигналов цветности — в 3 раза.

Сжатие аналогового сигнала осуществляется путем стробирования с тактовыми частотами: 6,75 МГц для сигналов цветности и 13,5 МГц для яркостного сигнала. Полученные сигналы накапливаются в запоминающем устройстве, после чего происходит их ускоренное считывание с более высокой тактовой частотой — 20,25 МГц. Полученные цифровые данные передаются в дуобинарном коде.

По сравнению с традиционными аналоговыми системами



в D2-MAC отсутствуют перекрестные искажения сигналов яркости и цветности; значительно снижены шумы в канале цветности благодаря его переводу в область низких частот (нет необходимости производить модуляцию поднесущей частоты цветоразностными сигналами); повышена разрешающая способность изображения за счет более широкой полосы частот сигналов яркости и цветности, отсутствию необходимости режекции в яркостном сигнале в области отсутствующих поднесущих частот; сигналы синхронизации, звукового сопровождения, телетекста и другой информации передаются в цифровой форме.



В результате стандарт цветного телевидения MAC позволяет получить улучшенное изображение на экране телевизора даже по сравнению со спутниковыми системами NTSC, PAL и SECAM.

В настоящее время в спутниковое вещание начала внедряться еще более современная система MPEG-2. Это сокращенное название организации «Moving Picture Expert Group». (Экспертная группа движущихся изображений). Эта система цифрового телевидения (Digital TV) также основана на уплотнении (компрессии) видеосигнала.

Так что же такое «компрессия видеосигнала»? Чтобы понять смысл этой операции, представим баржу, плывущую по реке от фермы до городского рынка. Стоимость доставки пшеницы будет определяться тем, сколько места она займет на барже. Но у вас есть волшебная машина, которая может

сжать пшеницу, и цена доставки уменьшится вдвое. Когда вы доплывете до рынка, машина вернет зерну первоначальный размер, и вы его продадите.

Цифровая компрессия — «волшебная машина» -для телевизионного сигнала, которая его сжимает, вследствие чего он занимает меньшую полосу частот в спутниковом канале связи по сравнению с несжатым (аналоговым).

При стоимости аренды спутникового канала свыше 200 тыс. долл. США в месяц эффект от применения компрессии составляет более 1 млн. долл. в год. Дефицит спутниковых каналов и связанный с этим рост цен на услуги спутникового вещания и связи делают применение технологии цифровой видеокомпрессии особенно выгодной. Поэтому компании, эксплуатирующие спутники, однозначно выиграют от перехода на новую технологию независимо от того, начинают ли они осваивать спутниковое вешание или уже ищут возможности его расширения.

Типичный цифровой некомпрессированный видеосигнал представляет собой информационный поток 150 Мбит/с (бит — наименьшая единица информации). Алгоритм (последовательность действий или команд, выполнение которых приводит к желаемому результату) компрессии основан на том факте, что видеосигнал состоит из отдельных элементов изображения или пикселов. Каждый кадр содержит десятки тысяч пикселов. Видеосигнал компрессируется одним из двух способов: внутрикадровым или межкадровым. Внутрикадровая компрессия происходит внутри каждого отдельного кадра, а межкадровая использует последовательность кадров.



При внутрикадровой компрессии происходит сжатие отдельного кадра безотносительно ко всем остальным. Поскольку компрессия каждого кадра происходит заново, даже если изменения в следующем кадре минимальны, то степень сжатия информационного потока получается ограниченной.

Межкадровая компрессия основана на том, что большая часть изображения остается неизменной от кадра к кадру. Аппаратура цифровой компрессии проводит сравнительный анализ кадровой последовательности и пересылает только информацию об изменениях в кадрах, а не сами кадры. Это позволяет значительно уменьшить цифровой поток и достигать больших коэффициентов компрессии по сравнению с внутрикадровым сжатием.

После того как аналоговые сигналы — звуковой, видео, телетекст, служебная информация — подвергаются цифровой обработке и сжатию, они пересылаются по спутниковым каналам связи для распространения. На выходе приемной аппаратуры происходит обратное преобразование: сигналы разделяются на звуковой, видео, телетекст, служебную информацию и принимают первоначальную аналоговую форму.

В отличие от аналоговой технологии цифровая видеокомпрессия обеспечивает устойчивый, высококачественный сигнал по всему тракту передачи и приема. Поскольку цифровой сигнал не подвержен преобразованиям как аналоговый, то телевизионного приемника достигает тот же сигнал, который выходит из студии.

Начинается новая эра дальнейшего развития спутникового телевизионного вешания. Для приема передач в системе MPEG-2 необходима совершенно новая и пока очень дорогостоящая аппаратура. Но настоящее и будущее — за спутниковым цифровым телевидением.

Так например, 23 ноября 1998 г. с базы ВВС США (мыс Канаверал, штат Флорида) с помощью американской ракеты «Дельта-2» в позицию 36° Е запущен принадлежащий России спутник BONUM-1 (МОСТ-1), который передает 17 программ телевидения в цифровом виде. Транспордеры ведут передачи в Ки диапазоне на частотах 12, 226 ГГц и выше с круговой поляризацией (попеременно чередуются L и R поляризации).


Орбиты искусственных спутников земли. вывод спутников на орбиту


Траектория движения ИСЗ называется орбитой. Во время свободного полета спутника, когда его бортовые реактивные двигатели выключены, движение происходит под воздействием гравитационных сил и по инерции, причем главной силой является притяжение Земли.

Если считать Землю строго сферической, а действие гравитационного поля Земли — единственной силой, воздействующей на спутник, то движение ИСЗ подчиняется известным законам Кеплера: оно происходит в неподвижной (в абсолютном пространстве) плоскости, проходящей через центр Земли, — плоскости орбиты; орбита имеет форму эллипса (рис 3.1) или окружности (частный случай эллипса).


При движении спутника полная механическая энергия (кинетическая и потенциальная) остается неизменной, вследствие чего при удалении спутника от Земли скорость его движения уменьшается.

Уравнение эллиптической орбиты спутника Земли в полярной системе координат определяется формулой


В случае эллиптической орбиты точкой перигея называют точку орбиты, соответствующую наименьшему значению радиус-вектора r = rп, точкой апогея — точку, соответствующую наибольшему значению r = ra (рис. 3.2).

Земля находится в одном из фокусов эллипса. Входящие в формулу (3.1) величины связаны соотношениями:


Расстояние между фокусами и центром эллипса составляет ае, т. е. пропорционально эксцентриситету. Высота спутника над поверхностью Земли

h=r-R,

где R — радиус Земли. Линия пересечения плоскости орбиты с плоскостью экватора (а — а на рис. 3.1) называется линией узлов, угол i между плоскостью орбиты и плоскостью экватора — наклонением орбиты. По наклонению различают экваториальные (i = 0°), полярные (i = 90°) и наклонные орбиты,(0°<i<90° 90°<i<180°).

Орбита спутника характеризуется также долготой апогея д — долгота подспутниковой точки (точка пересечения радиуса-вектора с поверхностью Земли) в момент прохождения спутником апогея и периодом обращения Т (время между двумя последовательными прохождениями одной и той же точки орбиты).

Для систем связи и вещания необходимо, чтобы имелась прямая видимость между спутником и соответствующими земными станциями в течение сеанса связи достаточной длительности. Если сеанс не круглосуточный, то удобно, чтобы он повторялся ежесуточно в одно и то же время. Поэтому предпочтительны синхронные орбиты с периодом обращения, равным или кратным времени оборота Земли вокруг оси, т. е. звездным суткам (23 ч 56 мин 4 с).




Широкое применение нашла высокая эллиптическая орбита с периодом обращения 12 ч, когда для систем связи и вешания использовались спутники «Молния» (высота перигея 500 км, апогея — 40 тыс. км). Движение ИСЗ на большой высоте — в области апогея — замедляется, а область перигея, расположенную над южным полушарием Земли, спутник проходит очень быстро. Зона видимости ИСЗ на орбите типа «Молния» в течение большей части витка вследствие значительной высоты велика. Она расположена в северном полушарии и поэтому удобна для северных стран. Обслуживание всей территории бывшего СССР одним из ИСЗ возможно в течение не менее 8 ч, поэтому трех ИСЗ, сменяющих друг друга, было достаточно для круглосуточной работы. В настоящее время ради исключения перерывов связи и вещания, упрощения систем наведения антенн земных станций на ИСЗ и других эксплуатационных преимуществ осуществлен переход на использование геостационарных орбит (ГСО) спутников Земли.

Орбита геостационарного ИСЗ — это круговая (эксцентриситет е = 0), экваториальная (наклонение i = 0°), синхронная орбита с периодом обращения 24 ч, с движением спутника в восточном направлении.

Орбиту ГСО еще в 1945 г. рассчитал и предложил использовать для спутников связи английский инженер Артур Кларк, известный впоследствии как писатель-фантаст. В Англии и многих других странах геостационарную орбиту называют «Пояс Кларка» (рис. 3.3).



Орбита имеет форму окружности, лежащей в плоскости земного экватора с высотой над поверхностью Земли 35 786 км. Направление вращения ИСЗ совпадает с направлением суточного вращения Земли. Поэтому для земного наблюдателя спутник кажется неподвижным в определенной точке небесной полусферы.

Геостационарная орбита уникальна тем, что ни при каком другом сочетании параметров нельзя добиться неподвижности свободно движущегося ИСЗ относительно земного наблюдателя. Необходимо отметить некоторые достоинства геостационарных ИСЗ. Связь осуществляется непрерывно, круглосуточно, без переходов (заходящего ИСЗ на другой);



на антеннах земных станций упрощены, а на некоторых даже исключены системы автоматического сопровождения ИСЗ;

механизм привода (перемещения) передающей и приемной антенн облегчен, упрошен, сделан более экономичным; достигнуто более стабильное значение ослабления сигнала на трассе Земля — Космос; зона видимости геостационарного ИСЗ около одной трети земной поверхности; трех геостационарных ИСЗ достаточно для создания глобальной системы связи; отсутствует (или становится весьма малым) частотный сдвиг, обусловленный эффектом Доплера.

Эффектом Доплера называют физическое явление, заключающееся в изменении частоты высокочастотных электромагнитных колебаний при взаимном перемещении передатчика и приемника. Эффект Доплера объясняется изме

нением расстояния во времени. Этот эффект может возникнуть также и при движении ИСЗ на орбите. На линиях связи через строго гестационарный спутник доплеровский сдвиг не возникает, на реальных геостационарных ИСЗ — мало существен, а на сильно вытянутых эллиптических или низких круговых орбитах может быть значительным. Эффект проявляется как нестабильность несущей частоты ретранслируемых спутником колебаний, которая добавляется к аппаратурной нестабильности частоты, возникающей в аппаратуре бортового ретранслятора и земной станции. Эта нестабильность может существенно осложнять прием сигналов, приводя к снижению помехоустойчивости приема.

К сожалению, эффект Доплера способствует изменению частоты модулирующих колебаний. Это сжатие (или расширение) спектра передаваемого сигнала невозможно контролировать аппаратурными методами, так что если сдвиг частоты превысит допустимые пределы (например, 2 Гц для некоторых типов аппаратуры частотного разделения каналов), то канал оказывается неприемлемым.

Существенное влияние на свойства каналов связи оказывает и запаздывание радиосигнала при его распространении по линии Земля — ИСЗ — Земля.

При передаче симплексных (однонаправленных) сообщений (программ телевидения, звукового вешания и других дискретных (прерывистых) сообщений это запаздывание не ощущается потребителем. Однако при дуплексной (двусторонней) связи запаздывание на несколько секунд уже заметно. Например, электромагнитная волна от Земли на ГСО и обратно «путешествует» 2...4 с (с учетом задержки сигнала в аппаратуре ИСЗ) и наземной аппаратуре. В этом случае не имеет смысла передавать сигналы точного времени.



Вывод геостационарного спутника на орбиту обычно осуществляется многоступенчатой ракетой через промежуточную орбиту. Современная ракета-носитель представляет собой сложный космический летательный аппарат, который приводится в движение реактивной силой ракетного двигателя.

В состав ракеты-носителя входят ракетный и головной блоки. Ракетный блок является автономной частью составной ракеты с топливным отсеком, двигательной установкой и элементами системы разделения ступеней. Головной блок включает в себя полезную нагрузку и обтекатель, защищающий конструкцию ИСЗ от силового и теплового воздействий набегающего потока воздуха при полете в атмосфере и служащего для монтажа на его внутренней поверхности элементов, которые участвуют в подготовке к пуску, но не функционируют в полете. Главный обтекатель позволяет облегчить конструкцию ИСЗ и является пассивным элементом, надобность в котором отпадает после выхода ракеты-носителя из плотных слоев атмосферы, где он сбрасывается. Полезная нагрузка космического аппарата состоит из ретрансляционного оборудования связи и вещания, радиотелеметрических систем, собственно корпуса ИСЗ со всеми вспомогательными и обеспечивающими системами.

Принцип действий одноразовой многоступенчатой ракеты-носителя состоит в следующем: пока работает первая ступень, можно рассматривать остальные вместе с истинной полезной нагрузкой в качестве полезной нагрузки первой ступени. После ее отделения начинает работать вторая, которая вместе с последующими ступенями и истинной полезной нагрузкой образует новую самостоятельную ракету. Для второй ступени все последующие (если они есть) вместе с истинным полезным грузом играют роль полезной нагрузки и так далее, т. е. полет ее характеризуется несколькими этапами, каждый из которых является как бы ступенью для сообщения начальной скорости другим одноступенчатым ракетам, входящим в ее состав. При этом начальная скорость каждой последующей одноступенчатой ракеты равна конечной скорости предыдущей. Отторжение первой и последующих ступеней носителя осуществляется после полного выгорания топлива в двигательной установке.



Путь, который проходит ракета- носитель при выведении ИСЗ на орбиту, называют траекторией полета. Он характеризуется активным и пассивным участками. Активный участок полета — это пролет ступеней носителя с работающими двигателями, пассивный участок — полет отработавших ракетных блоков после их отделения от ракеты-носителя.

Носитель,стартуя вертикально (участок 1, расположенный на высоте 185... 250 км), выходит затем на криволиней



ный активный участок 2 в восточном направлении. На этом участке первая ступень обеспечивает постепенное уменьшение угла наклона ее оси по отношению к местному горизонту. Участки 3, 4 — соответственно активные участки полета второй и третьей ступеней, 5 — орбита ИСЗ, 6, 7 — пассивные участки полета ракетных блоков первой и второй ступеней (рис. 3.4).

При выведении ИСЗ на соответствующую орбиту большую роль играют время и место запуска ракеты-носителя. Подсчитано, что космодром выгоднее располагать как можно ближе к экватору, так как при разгоне в восточном направлении ракета-носитель получает дополнительную скорость. Эта скорость называется окружной скоростью космодрома Vк, т. е. скорость его движения вокруг оси Земли благодаря суточному вращению планеты.



т. е. на экваторе она равна 465 м/с, а на широте космодрома Байконур — 316 м/с. Практически это означает, что с экватора той же ракетой-носителем может быть запушен более тяжелый ИСЗ.

Завершающей стадией полета ракеты-носителя является вывод ИСЗ на орбиту, форма которой определяется кинетической энергией, сообщаемой ИСЗ ракетой, т. е. конечной скоростью носителя. В том случае, когда спутнику сообщается количество энергии, достаточное для его вывода на ГСО, ракета-носитель должна вывести в точку, удаленную от Земли на 35 875 км, и сообщить ему при этом скорость 3075 м/с.

Орбитальную скорость геостационарного ИСЗ легко подсчитать. Высота ГСО над поверхностью Земли 35 786 км, радиус ГСО на 6366 км больше (средний радиус Земли), т. е. 42 241 км. Умножив значение радиуса ГСО на 2л (6,28), получим ее длину окружности — 265 409 км. Если разделить ее на длительность суток в секундах (86 400 с), получим орбитальную скорость ИСЗ — в среднем 3,075 км/с, или 3075 м/с.



Обычно вывод спутника ракетой-носителем осуществляется в четыре этапа: выход на начальную орбиту; выход на орбиту «ожидания» (парковочную орбиту); выход на переходную орбиту; выход на конечную орбиту (рис. 3.5). Цифрам соответствуют следующие этапы вывода спутника на ГСО: 1 — первоначальная переходная орбита; 2 — первое

включение апогейного двигателя для выхода на промежуточную переходную орбиту; 3 — определение положения на орбите;

4 — второе включение апогейного двигателя для выхода на первоначальную орбиту дрейфа; 5 — переориентация плоскости орбиты и коррекция ошибок; 6 — ориентация перпендикулярно к плоскости орбиты и коррекция ошибок; 7 —

остановка платформы спутника, раскрытие панелей, полная расстыковка с ракетой; 8 — раскрытие антенн, включение гиростабилизатора; 9 — стабилизация положения: ориентация антенн на нужную точку Земли, ориентация солнечных батарей на Солнце, включение бортового ретранслятора и установление номинального режима его работы.




Основные характеристики и устройство радиовещательных спутников


Спутниковое вещание — передача радиовещательных программ (телевизионных и звуковых) от передающих земных станций к приемным через космическую станцию (активный ретранслятор). Таким образом, спутниковое вещание — это частный случай спутниковой связи, которая отличается передачей определенного класса симплексных сообщений, принимаемых одновременно несколькими земными станциями или большим числом приемных станций (циркулярная передача).

ИСЗ состоит из космической платформы и полезной нагрузки. Общая масса спутника в 2500...3000 кг, в то время как масса полезной нагрузки составляет 450...500 кг. Конфигурация геостационарных спутников тесно связана с радиотехническими и конструктивными параметрами полезной нагрузки (рис. 4.1; 4.2).

Конструкция ИСЗ должна выдерживать статические и динамические нагрузки, возникающие при запуске ракеты-носителя, при включении апогейного двигателя, и различного рода орбитальные возмущения. Динамические нагрузки, вызываемые работой стартовой установки, очень велики и состоят из механических и акустических ударов и вибраций, связанных с работой двигателя и возникающих в процессе движения.

Обычно конструкция ИСЗ условно делится на две части:

главную и вспомогательную (или обеспечивающую).

Главную конструкцию (корпус) на ИСЗ выполняют из легких алюминиевых сплавов. Она содержит простую оболочку цилиндрической или конической формы с рамой или ребрами жесткости, а также различные фасонные опоры и перекладины для ячеистых панелей солнечной батареи, плоскостей антенн и других устройств.


Вспомогательная конструкция (платформа) включает двигатели коррекции положения и стабилизации ИСЗ на орбите, резервуары с запасом топлива для них, систему терморегулирования и другие устройства, обеспечивающие нормальное функционирование ИСЗ на орбите.

К космической платформе предъявляется ряд требований: высокая степень удержания ИСЗ в заданной позиции на ГСО и устойчивость его положения; высокая точность наведения антенн; длительный срок службы на определенной орбитальной позиции; отвод (рассеяние) тепла, выделяемого полезной нагрузкой в свободное пространство; подвод электрической энергии от солнечных батарей к радиотехнической аппаратуре.




Система терморегулирования поддерживает температуру ИСЗ в пределах, подходящих для нормального функционирования аппаратуры. В космосе теплопередача происходит главным образом в результате излучения в вакуум. Для приборов ИСЗ она происходит через их конструктивную связь с внешними излучающими радиаторами, постоянная освещенность которых сильно ограничивает емкость теплопередачи.

Внешние источники тепловой энергии, воздействующие на ИСЗ,— это тепловые излучения Солнца и Земли, а также отраженная от освещенной части Земли солнечная радиация. Эти воздействия имеют различные спектральные и геометрические характеристики и поэтому не одинаково поглощаются (воспринимаются) поверхностью спутника.

Кроме того, полезная нагрузка состоит, как правило, из подсистем с локализованным (сосредоточенным) тепловыделением, например мощные усилители на ЛБВ (лампа бегущей волны), клистронах и т. п.

Система терморегулирования на ИСЗ использует жесткозакрепленные оптические солнечные отражатели, специальные материалы для создания легких поверхностей с высокой теплопроводностью (бериллий, магний), методы специального теплового кондиционирования.

Система контроля положения ИСЗ необходима для удержания радиолуча антенны (или нескольких антенн) спутника на заданные районы Земли.

Процесс контроля положения ИСЗ на орбите включает в себя следующие процедуры: измерение положения спутника по датчикам: сравнение результатов измерения с требуемыми значениями; вычисление поправок, которые должны быть сделаны для уменьшения ошибок; введение этих поправок включением в работу соответствующих двигательных установок.

Существует несколько методов получения данных по

крену ИСЗ и тангажу (ось вращения стационарного спутника, параллельная оси Земли). Один из способов измерения и удержания ИСЗ, используемый в диапазоне Ки и дающий высокую точность, основан на применении специального пилот-луча, сформированного на земной станции и направленного в сторону приемной антенны космической станции. Этот сигнал фиксируется и обрабатывается на борту для получения информации по непосредственной ориентации бортовых антенн. Вдобавок если пилот-сигналы подавать от двух достаточно разнесенных земных станций, то прямым измерением можно выявить ошибку вращения радиолуча, а затем устранить крен и тангаж ИСЗ.



Оказывается, что только теоретически при периоде обращения геостационарного спутника вокруг Земли, равного 24 ч, и совпадении направления своей оси вращения с направлением вращения Земли наблюдателю ИСЗ представляется неподвижным. В действительности возникает неизбежное отклонение реальных параметров орбиты от идеальных под воздействием внешних и внутренних дестабилизирующих факторов.

В первую очередь к ним относятся тяготения Луны и Солнца, аналогичные приливам и отливам морей и океанов на Земле. Другими факторами являются: гравитационный градиент (разность сил земного притяжения, вызванная разностью расстояний от центра массы Земли до различных частей ИСЗ); неровности формы и неравномерности поля сил тяжести Земли; магнитное поле Земли; давление солнечного излучения; некомпенсируемые движения внутренних двигателей, зубчатых передач, рычагов. Все силы, кроме внутренних крутящих моментов, хотя и малы, но оказывают постоянное воздействие. Внутренние крутящие моменты велики, но являются кратковременными.

В результате перечисленных дестабилизирующих факторов спутник не может лететь по математической орбите. Геостационарный спутник постоянно уходит с идеальной орбиты, совершает колебательные движения в виде «восьмерки», т. е. отклоняется по широте и долготе от точки стационарного положения.

На борту любого спутника имеются двигательные установки, которые по командам оператора с Земли стабилизируют его положение на ГСО. При необходимости с помощью двигателей-толкачей спутник изменяет свое положение на орбите в направлениях север — юг и запад — восток. Именно для работы двигателей коррекции на борту спутника находится определенное количество горючего.

В некоторых случаях горючее используется для изменения позиции спутника на ГСО. Так, например, российская

компания «НТВ-Плюс» арендовала французский спутник TDF 2, который много лет находился в позиции 19° W. С помощью собственной двигательной установки спутник переместился на позицию 36° Е, где уже находились два ИСЗ ГАЛС этой компании. В результате зрители пяти программ «НТВ-Плюс» с 1 ноября 1997 г. могут смотреть их с одного направления.



Наземная служба наблюдения постоянно работает не для того, чтобы удержать спутник на идеальной орбите (это практически невозможно), а управляет им так, чтобы он оставался в допустимом окне, т. е. уходил не более чем на определенный угол от заданного положения на геостационарной орбите над экватором. Регламент радиосвязи рекомендует, чтобы нестабильность положения современных геостационарных ИСЗ по долготе и широте не превышала ± 0,1°. Углу 0,1° соответствует расстояние около 74 км.

Из-за маневров орбита геостационарных спутников будет не круговой, а слегка эллиптической. Геометрическое расстояние спутника от центра Земли колеблется в течение суток — он приближается и удаляется. При этом перигей на 10...20 км ниже, а апогей на 10...20 км выше точного радиуса ГСО.

Траектория движения спутника является эллипсом, центр которого смещен на 10...20 км по радиусу от центра Земли наружу и на 20...40 км в направлениях запад — восток. Этот эллипс называется относительной эллиптической орбитой. Его не следует путать с почти круговым абсолютным эллипсом, по которому спутник двигается вокруг Земли.

При контроле орбиты спутника окно допуска используется полностью, чтобы минимизировать расход топлива на сохранение позиции. Чтобы уменьшить число корректирующих маневров, допускается определенная болтанка спутников по долготе и широте в течение суток, так же как и определенный дрейф в пределах окна допуска. При малом окне допуска, как у спутника KOPERNIKUS, необходимы еженедельные коррекции, при большем — один раз в две недели или еще реже.

На рис. 4.3 приведена схема размещения некоторых телевизионных спутников на ГСО для вешания на Европейский регион. В позиции 36° Е находятся три спутника: GALS 1, GALS 2 и TDF 2; в позиции 19,2° Е — шесть спутников ASTRA (1A...1G); в позиции 13° Е — пять спутников НОТ BIRD и один спутник EUTELSAT II F1.

Спутники не очень велики, а в космосе много места, и статистически шансы столкновения таких объектов между собой кажутся незначительными. Инженеры, однако, хотят иметь полную гарантию.





Управляя спутниками в узком окне допуска, специалисты следят за тем, чтобы на относительной эллиптической орбите спутники находились в противоположных точках. Если спутник 1 расположен в ближней к Земле точке, спутник 2 находится в дальней от Земли точке. Спустя шесть часов спутник 1 окажется в восточной точке относительно эллиптической орбиты, а его партнер — в западной. Иначе говоря, оба спутника динамически разделены.

Из-за неизбежных ошибок при выполнении маневров и определении орбиты спутники двигаются по не совершенно одинаковым траекториям и не совсем в фазе. По этой причине число спутников, которые можно разместить в окне допуска, ограничено. Сегодняшняя техника позволяет безопасно удерживать в окне 0,1° от четырех до шести спутников. С использованием бортовых измерений на спутниках их количество в окне допуска будет увеличиваться.

Управляющий центр учитывает и наклонение относительной эллиптической орбиты относительно экваториальной плоскости Земли. Эта степень свободы позволяет еще безопаснее удерживать спутники в окне допуска, так как даже при смешениях отдельных относительных орбит в восточно-западном направлении спутники постоянно остаются на удалении.

На борту спутника могут быть установлены автономные устройства стабилизации положения на ГСО. Существует два основных способа стабилизации геостационарного спутника: стабилизация вращением и трехосная, или непосредственная, стабилизация.

Стабилизация вращением — простейший вид стабилизации ИСЗ в пространстве за счет вращения части ИСЗ с частотой 80...100 об/мин. При этом появляются гироскопическая жесткость и стабилизация углового положения, характеризующегося ориентацией оси вращения. Коррекция положения ИСЗ может быть выполнена путем периодических включений двигателя малой тяги, так как возмущающие факторы снижают частоту вращения части спутника, влияют на направление оси вращения.

Более широкое распространение получили ИЗС двойного вращения, когда в конструкции спутника используются вращающийся барабан и противовращательная платформа, т. е. направление вращения платформы постоянно противоположно направлению вращения барабана. За счет этого платформа имеет почти нулевую угловую скорость, занимает стабильное положение на ГСО.



Трехосная стабилизация осуществляется путем управления угловым положением спутника относительно каждой из его осей. Такое управление выполняется в результате непосредственного измерения угловых перемещений относительно всех трех осей, или за счет применения приборов с кинетическим моментом, например типа маховика, который действует одновременно как гироскоп и стабилизатор вращения. Быстроходный вращающийся маховик позволяет удерживать направление на Солнце панелей солнечных батарей, обеспечивая гироскопическую жесткость одной, двух или трех осей ИСЗ. Для поддержания постоянной ориентации спутника в условиях возмущений, которые всегда имеют место на ГСО, эти приборы снабжаются чувствительными элементами и датчиками.

Наиболее широкое распространение получили спутники с вращающимся маховиком, который благодаря гироскопическим свойствам стабилизирует одну ось спутника. Управление ориентацией таких спутников осуществляется изменением скорости вращения маховика, эпизодического использования двигателя малой тяги и стабилизации для поддержания постоянной ориентации оси собственного вращения маховика.

В зависимости от количества приемников активных ретрансляторов и других устройств аппаратура геостационарного спутника потребляет 6...7 кВт.



Батареи ИСЗ всегда обращены к Солнцу, их ничто и никогда не сможет затенить, благодаря чему аппаратура ИСЗ бесперебойно получает необходимое количество электрической энергии (рис. 4.4).

Фотоэлектрические солнечные батареи годами служат основным средством преобразования солнечной энергии в электрическую для питания устройств ИСЗ. Преобразователями являются полупроводниковые фотоэлементы, последовательно-параллельное соединение которых и образует солнечную батарею. Последнюю выполняют в виде нескольких панелей общей площадью до 20 м^2, имеющих до 8000 фотоэлементов. Типовая мощность на единицу площади находится в пределах 10...110 Вт/м^2 со средним КПД = 7...11%, в лучших образцах — до 15% (максимальный теоретический — 25%). Каждый фотоэлемент развивает ЭДС, равную 0,3...0,4 В (рис. 4.5).



Рассмотрим основные элементы радиотехнического комплекса космической станции, входящего в систему спутникового вещания (связи). Этот комплекс состоит из антенн, приемников и бортового ретранслятора.

В отличие от земных станций, которые имеют в своем составе одну антенну, на борту ИСЗ обычно устанавливают несколько передающих и приемных антенн. Это объясняется необходимостью формирования различных зон обслужива-



ния, привода в соответствие излучения антенн с размещением земных станций на поверхности Земли (чтобы не рассеивать энергию бесполезно на те районы, где она не используется или для которых не предназначена). На рис. 4.4 хорошо видны четыре антенны: большего диаметра — приемные, меньшего — передающие.

В зависимости от ширины диаграммы направленности бортовых антенн ИСЗ образуется зона покрытия (часть поверхности земного шара), в пределах которой обеспечивается уровень сигналов от спутника, необходимый для их приема с заданным качеством, а также гарантируется способность приема на входе ИСЗ сигналов от земной станции, обладающих определенной эквивалентной изотропно-излучаемой мощностью (ЭИИМ — произведение мощности передатчика на коэффициент усиления антенны в полосе передачи относительно изотропной (ненаправленной) антенны).

Зона покрытия определяется не только шириной диаграммы направленности антенны ИСЗ, но и особенностями геометрических построений, возникающих при сечении поверхности Земли конусом луча антенны. Форма этого сечения зависит от точки размещения ИСЗ, точки прицеливания — точки пересечения оси главного лепестка диаграммы направленности антенны ИСЗ с земной поверхностью. Например, точка прицеливания российских спутников ГАЛС находится между Москвой и Саратовым.

Энергия, которая принимается со спутника, определяется мощностью на конкретную площадь, например мкВт/м^2. Из

этого можно сделать вывод, что чем с большей площади мы будем снимать сигнал, который приходит с ИСЗ, тем большую полезную мощность сможем использовать. Однако это мощность небольшая, она находится на уровне космических и тепловых шумов. Поэтому полезный сигнал необходимо принимать с такой площади и с той точки пространства, от которой он будет превышать окружающие шумы и шумы самого приемника. Если на антенне не установлен усилитель, который смог бы осуществить усиление сигналов на частоте передатчика спутника (что в любительских условиях сделать практически весьма сложно), то диаметр приемной параболической антенны должен быть порядка 1,8...2,0 м.



Таким образом, зона обслуживания спутника зависит от размеров приемной антенны: чем больше диаметр антенны, тем большая зона обслуживания. На рис. 4.6 около границ зон обслуживания указаны диаметры приемных антенн в метрах (большая величина — для приема телевизионных сигналов, меньшая -г- для приема радиовещательных сигналов).



Зона приема может быть еще большей, если снизить требования к надежности качественного приема. Затухание сантиметровых волн, на которых ведется спутниковое вешание, зависит от состояния атмосферы: снег, дождь, туман значительно ослабляют принимаемый сигнал..

Целесообразно рассмотреть некоторые теоретические сведения, которые позволяют оценить возможности приема телевизионных сигналов с ИЗС на основе энергетических соотношений.

Обычно уже известна мощность бортового ретранслятора ИСЗ в виде ЭИИМ в заданном направлении. Например, в системе «Москва» ЭИИМ равна 43 дБВт, а в системе ASTRA (Люксембург) — более 50 дБВт в центре приемной зоны. Приемной зоной считается участок поверхности Земли, на границах которого уровень сигнала уменьшается на 3 дБ по сравнению с центром.

Затухание сигнала в свободном пространстве L (дБ) определяется по формуле



В интервале частот 11...12 ГГц затухание сигнала достигает 205...207 дБ. Причем для обеспечения необходимого количества приема в течение 99% времени при расчетах необходимо увеличить затухание на 4...5 дБ (с учетом действия атмосферных осадков).

Усиление параболической антенны G (дБ) вычисляют по выражению



где D — диаметр приемной антенны; Ка — коэффициент использования поверхности (КИП) зеркала антенны (обычно среднее значение равно 0,6).

Следовательно, уровень мощности сигнала Рс (дБВт) на входе приемника можно найти по следующему соотношению:

Pс = ЭИИМ - L + G.

Если известна плотность потока мощности сигнала у поверхности Земли, то мощность сигнала определяют умножением этой плотности потока на эффективную площадь поверхности зеркала параболической антенны.

Приемные спутниковые установки имеют полосу пропускания 25...37 МГц. Они оборудованы входными малошумящими усилителями с температурой шума Тш 120...130 К и





антеннами, температура шума которых равняется 50... 70 К. Зная суммарную шумовую температуру и полосу пропускания, можно определить мощность шума Рш (Вт) на входе приемника:



Сужением полосы злоупотреблять не следует, так как при ее уменьшении до 12...14 МГц и меньше начинает исчезать звуковое сопровождение, сигнал которого обычно передается на поднесушей частоте 5,5...8,0 МГц. Затем пропадает цветность, поднесущие сигналов которой находятся в интервале 4,2...4,5 МГц, и, наконец, существенно теряется четкость с появлением других искажений.

Сигнал, принятый антенной космической станции, поступает на входное устройство (1), в качестве которого на ИСЗ применяют усилители на малошумящих лампах бегущей волны (ЛБВ) или транзисторах. В смесителе (2) с помощью гетеродина осуществляется преобразование принятого сигнала в сигнал промежуточной частоты, который усиливается в устройстве (3) (рис. 4.7).

На бортовом ретрансляторе космической станции могут использоваться устройства разделения, коммутации, объединения сигналов (4), цель которых — подавать сигналы, адресованные тем или иным земным станциям, на передающие антенны с соответствующей зоной обслуживания. Коммутация сигналов может осуществляться в пределах как одного ствола, так и нескольких стволов.

Стволом ретранслятора или земной станции спутниковой связи называют приемопередающий тракт, в котором радиосигнал (радиосигналы) проходит через общие усилительные элементы (общий выходной каскад передатчика) в некоторой

выделенной стволу общей полосе частот. Очевидна некоторая условность такого определения, во всяком случае для земных станций. Так, несколько стволов могут иметь общие элементы — антенну, волноводный тракт, малошумяший входной усилитель. С другой стороны, на земной станции полоса одного ствола может разделяться фильтрами для последующего детектирования сигналов от различных земных станций, проходящих через общий ствол ИСЗ.

Более четкое значение понятия «ствол» сохраняется для бортового ретранслятора. Диапазон частот, в котором работает система связи, принято разделять на некоторые участки полосы (шириной 35...40, 80...120 МГц), усиление сигналов в которых осуществляется отдельным трактом — стволом. В настоящее время вместо понятия «ствол» используют определение «транспондер».



Число транспондеров, одновременно действующих на ИСЗ, составляет обычно от 6 до 12, достигая на наиболее мощных ИСЗ нескольких десятков. Сигналы этих транспондеров разделяются по частоте, пространству и поляризации. Числом транспондеров, их полосой пропускания и ЭИИМ определяется в основном важнейший суммарный показатель ИСЗ — его пропускная способность, т. е. число организуемых через ИСЗ каналов — телефонных и радиотелевизионных. Пропускная способность, по существу, является характеристикой системы, а не ИСЗ.

Пропускная способность транспондера ИСЗ зависит в некоторой степени не только от основных показателей — полосы пропускания и ЭИИМ, но и от других параметров, определяющих искажения передаваемых сигналов — линейности амплитудной характеристики, величины AM — ФМ преобразования и др. Эти параметры влияют на взаимные помехи между сигналами различных земных станций, на достоверность приема сигналов и тем самым на энергетические потери, обусловленные прохождением сигналов через неидеальный тракт бортового ретранслятора ИСЗ.

После коммутатора (4) сигнал поступает на усилитель (2), смеситель (5), на оконечный усилитель мощности (6) и передающую антенну. На схеме не показаны резервные элементы и устройства переключения на резерв. Эти устройства достаточно сложны, поскольку степень резервирования различна для каждого элемента тракта в зависимости от его надежности, важности для жизнеспособности ИСЗ, продолжительности срока службы (рис. 4.7).

В околоземном пространстве на высотах ГСО спутник подвергается воздействию ряда факторов космической среды, сокращающих срок его службы. В самых трудных условиях эксплуатируются устройства, элементы и материалы, расположенные вне герметичных отсеков на внешней поверхности ИСЗ. Приборы, находящиеся внутри ИСЗ (в гермо-

контейнерах), главным образом «атакует» проникающая радиация — корпускулярные излучения большой энергии: космические лучи, в частности тяжелые ядра. Наиболее интенсивными первичными факторами, влияющими на внешнюю поверхность ИСЗ и его работоспособность, являются космический вакуум, потоки плазмы, корпускулярные и магнитные излучения, микрометеориты. Они способствуют созданию собственной атмосферы ИСЗ и его электризации на ГСО.



Собственная атмосфера возникает из- за изменения космического вакуума самим ИСЗ за счет эрозии материалов с негерметизированных поверхностей спутника, неизбежных утечек газа и его конденсата из герметизированных отсеков, выхлопных продуктов ракетных двигателей (газы, частицы несгоревшего топлива).

Собственная атмосфера изменяет физические и химические характеристики космического пространства вблизи ИСЗ. Кроме того, ионы, атомы и молекулы собственной атмосферы, осаждаясь на внешних поверхностях функциональных элементов бортовой аппаратуры, образуют пленку загрязнения, которая под воздействием ультрафиолетового излучения Солнца, потока частиц (протонов, электронов и т. п.), тепла может увеличиться. В результате создаются специфические условия для работы аппаратуры ИСЗ или отдельных его узлов, как правило, нарушающие ее нормальное функционирование. Это касается бортового радиоэлектронного оборудования, установленного в негерметизированных отсеках или на внешней поверхности ИСЗ. Характеристики элементов солнечных батарей ухудшаются из-за деградации в структуре полупроводников, появляющейся вследствие их бомбардировки электронами и протонами космического пространства. На ГСО основной причиной снижения характеристик элементов батарей является «бомбардировка» их протонами, причем наибольшая интенсивность воздействия наблюдается во время вспышек на Солнце. Поскольку вспышки носят циклический характер, реальный срок службы солнечных элементов зависит от времени запуска ИСЗ. Для защиты от радиации солнечных элементов их, например, покрывают жидким кварцем или микропленкой с добавкой церия.

На высотах ГСО на поверхности ИСЗ накапливается электрический заряд, создающий разность потенциалов до 20 кВ, которая может вызвать пробой или образование электрической дуги в вакууме, так как многие материалы не могут выдерживать такие большие напряжения. Эти явления в свою очередь, приводят к возникновению электромагнитных помех в различных электрических цепях ИСЗ, которые воздействуют как на входное приемное оборудование, так и непосредственно на цепи коммутации и управления. Наблюдались случаи полного выхода из строя полупроводниковых



элементов. Кроме того, явления, связанные с возникновением электрической дуги между отдельными частями ИСЗ, приводят к термическому разложению теплозащитного покрытия, т. е. испарению или выгоранию материала.,(алюминия), входящего в состав покрытия, к загрязнению поверхности ИСЗ продуктами испарения, дополнительно нарушая нормальное функционирование светочувствительных приборов ориентации и датчиков давления.

Для устранения воздействия электризации ИСЗ на работу его оборудования принимают следующие конструктивно-технологические меры: заземляют все узлы оборудования и кабелей на основную несущую платформу; в конструкции ИСЗ выбирают правильное сочетание металлических и диэлектрических поверхностей с точки зрения равномерного распределения потенциалов по всей поверхности; уменьшают площади диэлектрических материалов на внешней поверхности ИСЗ или применяют специальные прозрачные и проводящие покрытия; уменьшают число различных отверстий и щелей в конструкции для ограничения проникновения зарядов внутрь корпуса ИСЗ, тщательно экранируют электронные цепи от воздействия электрических и магнитных полей в широком частотном и амплитудном интервалах; разрабатывают электронные схемы, устойчивые к воздействию широкого спектра электромагнитных помех.

На борту любого спутника имеются двигательные установки, которые по командам оператора с Земли стабилизируют его положение на орбите. Срок эксплуатации спутника ограничен количеством горючего для двигателей коррекции, которое он может взять с собой на борт. В зависимости от типа спутника его «жизнедеятельность» составляет от 7 до 12...15 лет. По истечении этого периода на остатках горючего по команде с Земли спутник выводится на так называемую «кладбищенскую орбиту».

Эта орбита находится примерно на 200 км выше геостационарной. Здесь отработавшие спутники уже не представляют опасности для действующих ИСЗ на ГСО. Кроме того, находясь на новой орбите, спутники постепенно удаляются от Земли, тогда как находясь на орбите ниже геостационарной, они приближались бы к нашей планете.

Однако не всегда причиной «гибели» спутника бывает окончание запаса горючего. Например, 17 ноября 1995 г. в 17 ч 25 мин по московскому времени ракетой-носителем «Протон» с космодрома Байконур был выведен на ГСО спутник ГАЛС-1. На его борту были установлены два ретранслятора мощностью 85 и 45 Вт. К сожалению, передатчик мощностью 85 Вт не выдержал тестовых испытаний и вышел из строя. Зрители программы «НТВ-Плюс» так и не услышали новостей с орбиты, хотя планируемый срок работы ретранслятора на ИСЗ составлял 7,5 лет.


Фиксированные и вещательные системы спутниковой связи


Спутниковые системы, передающие радиотелевизионные программы, можно разделить на две службы: фиксированную спутниковую (ФСС) и вещательную спутниковую (ВСС).

ФСС — служба радиосвязи между земными станциями (называют телепорт), расположенными в определенных, фиксированных пунктах, при использовании одного или нескольких спутников. К ФСС относят также фидерные линии, по которым осуществляется подача программ в телепорт.

При передаче радиотелевизионных программ с помощью систем ФСС различают прямое и косвенное распределение программ. В случае прямого распределения программы подают от ФСС непосредственно на наземные вещательные станции без каких-либо промежуточных распределительных систем. В случае косвенного распределения программы поступают от земных станций ФСС для дальнейшего распределения по наземным сетям (радиорелейные линии и кабельные магистрали) к различным наземным вещательным станциям, работающим в диапазонах MB и ДМВ.

Из российских к службе ФСС относятся системы «Экран» и «Москва», которые начали работать в 1976 и 1980 гг. соответственно. На ГСО используются спутники типа ГОРИЗОНТ и ЭКСПРЕСС. Из зарубежных к ФСС относятся спутники организаций INTELSAT, EUTELSAT, ASTRA с аналогичными названиями.

Мощность передатчиков на спутниках ФСС меньше (например, спутники ГОРИЗОНТ имеют мощность ретранслятора 40 Вт и коэффициент усиления передающей антенны ИСЗ — 30 дБ), чем передатчиков спутников ВСС (до 100...120 Вт и более). Такие сигналы обычно не принимаются (или плохо принимаются) на индивидуальные приемные установки, так как для обеспечения высокого качества приема необходима аппаратура более высокой стоимости и сложности. Вот почему некоторые владельцы спутниковой аппаратуры с достаточно высокими ее параметрами для индивидуального приема, добиваясь тщательной ориентации антенны на спутник, не могут получить изображение на экране телевизора с хорошим качеством.

В качестве примера можно привести прием на территории Республики Беларусь программы НТВ со спутника ГОРИЗОНТ-35 (80° Е) и других ИСЗ этой серии. Стабильность положения таких ИСЗ на ГСО ниже, чем для спутников ВСС, так как прием должен обеспечиваться с помощью антенн диаметром 2.5...3 м и более. В результате после точной ориентации на спутник владелец аппаратуры замечает, что примерно через 4 ч качество приема снижается и возникает необходимость в новой корректировке антенны на этот ИСЗ. Некоторые радиолюбители для бесперебойного приема этой программы устанавливают две антенны с разной ориентацией на спутник. В случае ухода ИСЗ из «поля зрения» первой антенны осуществляется переход на вторую.




Следует отметить, что успехи развития техники сверхвысоких частот в последнее время позволяют создавать относительно простые и недорогие телевизионные установки с антеннами приемлемых размеров для индивидуального приема не только ВСС, но и фиксированной службы. Это привело к тому, что многие телезрители в разных странах приобретают приспособления для приема телевизионных программ со спутников ФСС, не имея для этого формального права. Поэтому некоторые владельцы телевизионных программ, которые передаются спутниками ФСС, зашифровывают свои передачи. Их прием возможен только после приобретения специального дешифровального приспособления и оплаты за прием.

ФСС работает в различных частотных диапазонах (С и Ки), однако для нас интерес представляют спутники ФСС, которые работают на частотах, смежных с частотами ВСС (11,7...12,5 ГГц). Это полосы частот 10,7...11,7 и 12,5...12,75 ГГц. В Европе на этих частотах работают передающие телевизионные программы ИСЗ Международной организации спутниковой связи INTELSAT, Европейская организация для спутниковой связи EUTELSAT, национальные спутники или ИСЗ, принадлежащие коммерческим организациям TELECOM (Франция), KOPERNIKUS (Германия), ASTRA (Люксембург).

Каждый спутник ВСС имеет несколько передатчиков-ретрансляторов, а спутники ФСС — до десяти и более ретрансляторов, передающих одновременно множество программ. В настоящее время передающая часть станций ФСС строится по принципу «много программ на одну несущую», что позволяет более экономно расходовать энергетический

и частотный ресурс транспондера. Большинство ретрансляторов имеет ограниченную зону обслуживания, поэтому не все программы можно принимать на территории Республики Беларусь (например, передачи со спутника KOPERNIKUS и др.).

К ФСС необходимо отнести многофункциональную спутниковую радиовещательную систему для стран СНГ, которая принята в эксплуатацию 1 октября 1996 г. Международная телерадиокомпания «Мир» была создана для обеспечения объективной информацией о суверенных государствах и сохранения информационного пространства. Технической основой для сбора и распространения информации был выбран восточный луч спутника INTELSAT 604 в точке стояния 60° Е.



Сеть сбора новостей работает следующим образом: центральная станция сети постоянно передает из Москвы четыре мультиплексированных канала и одновременно принимает один канал любой из шести земных станций, работающих в режиме передачи и теле- и радионовостей по расписанию. Земные станции, расположенные в Санкт-Петербурге, Алма-Ате, Бишкеке, Баку, Ереване и Минске, передают на центральную станцию свою программу, занимая по очереди одну и ту же частотную позицию. Одновременно они принимают четыре канала от центральной станции в Москве.

Удачное сочетание расположения зоны освещения восточного луча спутника INTELSAT 604, которая покрывает все страны СНГ, и представляемых компанией «Романтис» (Берлин) наиболее передовых технологий в области цифрового теле- радиовещания позволило на более качественном уровне и за короткий срок решить задачу построения системы сбора новостей для телерадиокомпании «Мир». Телевизионные сигналы передаются в цифровом виде по системе MPEG-2.

Рассмотрим устройство приемных установок спутникового телевидения «Экран» и «Москва» в системе ФСС.

Все приемные устройства спутникового телевидения построены по супергетеродинной схеме. Они подразделяются на две группы: установки одно- и двуствольные (одно- или двучастотные), принимающие сигналы только с одного спутника, и устройства, рассчитанные на большое число сигналов с нескольких спутников. В первой группе применяется одинарное преобразование частоты, во второй — двойное. В первом случае промежуточная частота (ПЧ) обычно равна 70 МГц, а полоса пропускания — 25...37 МГц. Во втором случае первая ПЧ может находиться в пределах 0,95... 1,75 ГГц при полосе пропускания 800 МГц. Вторая ПЧ может быть в интервале 70...850 МГц с полосой пропускания, как и в первом случае.

Антенная система кроме элементов конструкции антенны содержит облучатель (активная направленная антенна), узел выбора необходимой поляризации (поляризатор) и устройство наведения на выбранный спутник. Оно содержит механический привод (актуатор) и блок, называемый позиционером, для управления этим приводом.



Наружный блок (конвертер) представляет собой малошумяший усилитель или усилитель-преобразователь колебаний высокой частоты в сигнал ПЧ. Этот блок во всех установках, как правило, расположен на антенне, он часто выполнен в виде единой конструкции с облучателем и поляризатором.

Внутренний блок (приемник спутникового телевидения, или тюнер, или ресивер) для устройств первой группы (с одним преобразованием частоты) содержит усилитель ПЧ, демодулятор частотно-модулированного сигнала, тракты изображения и звука. Для установок второй группы (с двойным преобразованием частоты) — усилитель первой ПЧ, селектор каналов, усилитель второй ПЧ, демодулятор ЧМ сигнала, тракты изображения и звука.

Ремодулятор (формирователь стандартного телевизионного сигнала) обеспечивает получение обычного сигнала в диапазоне MB или ДМВ для подачи на антенный вход телевизора. Он может и отсутствовать, если внутренний блок установлен непосредственно в телевизоре, что уже делают в некоторых отечественных и зарубежных моделях. Для иллюстрации рассмотрим состав различных приемных устройств спутникового телевидения (рис. 5.1).

Установка системы «Экран» рассчитана для работы с одним из двух сигналов с несущими частотами 714 или 754 МГц. Принятый антенной системой (АС) сигнал поступает на малошумящий транзисторный усилитель (МШУ), расположенный непосредственно на антенне. После МШУ частотно-модулированный сигнал через усилитель радиочастоты (УРЧ) с полосовым фильтром поступает на преобразователь, включающий в себя смеситель (См1) и гетеродин (Г1). Преобразованный на частоту 70 МГц сигнал проходит через усилитель промежуточной частоты (УПЧ) на частотный детектор (ЧД). Выделенные после него сигналы изображения и звука приходят раздельно на амплитудный модулятор (AM) и смеситель (См2), на которые воздействуют колебания гетеродина (Г2). Полученные сигналы поступают на сумматор, где и формируется стандартный телевизионный сигнал для подачи на антенный вход телевизора.



Приемная установка «Москва» обеспечивает прием одного канала с центральной частотой 3675 МГц. Ее антенна — параболическое зеркало диаметром 1,5 или 2,5 м со спиральным облучателем для сигналов с круговой поляризацией (рис. 5.2). Наружный блок (усилитель-преобразователь) расположен на волноводном входе облучателя с тыльной стороны зеркала антенны. Он содержит МШУ, полосовой фильтр (ПФ), смеситель (См) с гетеродином (Г) и предварительный усилитель промежуточной частоты (ПУПЧ). Сигналы ПЧ с предварительного усилителя проходят на внутренний блок, состоящий из основного усилителя промежуточной частоты (УПЧ) с фильтром ПЧ, в котором сформирована необходимая полоса пропускания; частотного детектора (ЧА); видеоусилителя (ВУ) и тракта звука, содержащего демодулятор поднесущей звука (ДЗ) с системой обратной связи по частоте.



Рассмотрим более подробно типовую приемную установку для полосы частот 10,95...12,5 ГГц (рис. 5.3). Параболическая антенна (диаметр в зависимости от места расположения установки равен 0,9...1,2 м) принимает сигналы с двумя ортогональными проекциями (Н и V) для систем ФСС, в которых обычно используется линейная поляризация, или левого и правого направления вращения для радиовещательных систем (с круговой поляризацией LZ или RZ). Сигналы с ИСЗ принимаются антенной в интервале частот 10,95...11,7 или 11,7...12,5 ГГц и, пройдя узел выбор поляризации (ВП), поступают на наружный блок.

Наружный блок состоит из широкополосного малошумящего усилителя (МШУ); полосового фильтра помех (ПФ);

балансного смесителя (См1); гетеродина (П), представляющего собой генератор, частота которого стабилизирована диэлектрическим резонатором; предварительного усилителя промежуточной частоты (ПУПЧ). В упрощенных



радиолюбительских конструкциях МШУ и ПФ могут отсутствовать, и передаваемый со спутника сигнал поступает непосредственно на смеситель(См1),расположенный в фокусе зеркала параболической антенны. После первого преобразования принятый сигнал уже в интервале частот 0,95... 1,75 ГГц по коаксиальному кабелю с незначительным затуханием поступает во внутренний блок. Напряжение питания на наружный блок подается через разделительный фильтр

по центральному проводнику того же кабеля с внутреннего блока.

Во внутреннем блоке после основного усиления в усилителе (УПЧ1) осуществляются второе преобразование частоты в смесителе (См2), выбор необходимого канала, демодуляция, разделение видео- и звукового сигналов и перенос их в стандартный телевизионный канал.

Необходимый канал выбирают настройкой гетеродина (Г2) второго преобразователя посредством блока управления (БУ). Гетеродин представляет собой транзисторный генератор высокочастотных колебаний, управляемый напряжением, которое подается на включенный в контур варикап. Этот полупроводниковый диод предназначен для работы в качестве управляемой емкости. Действие его основано на зависимости барьерной емкости от величины приложенного к диоду обратного напряжения.



Тракт второй промежуточной частоты обеспечивает формирование полосы пропускания в фильтре сосредоточенной селекции (ФСС) и дополнительное усиление во втором усилителе промежуточной частоты (УПЧ2). В тракт обязательно входит эффективная система автоматической регулировки усиления (APУ) с глубиной регулировки усиления 25...30 дБ. Такой большой диапазон регулировки усиления необходим для того, чтобы установка могла хорошо работать в любых условиях приема, характеризующихся разными диаметрами приемных антенн, длинами соединительных кабелей между наружным и внутренним блоками, уровнями электромагнитных сигналов в данной местности с различных ИСЗ.

Демодуляция сигнала обычно осуществляется в синхронном фазовом детекторе (СФД), который состоит из основных узлов (рис. 5.4): фазового детектора (ФД); частотно-модулированного генератора (ЧМГ); устройства управления (УУ), включающее в себя специальный фильтр и видеоусилитель; входного видеоусилителя (BУ).

После устройства СФД (см. рис. 5.3) следует фильтр (Ф), разделяющий сигналы изображения и звукового сопровождения. В тракт изображения входят устройство привязки уровня, восстанавливающий контур системы предыскажений и устройство регулировки выходного уровня в усилителе видеосигналов (BY).

Тракт звука содержит смеситель с гетеродином, усилитель ПЧ и частотный детектор ДЗ. На частоту поднесущей настраиваются изменением частоты гетеродина. Для улучшения помехоустойчивости тракт звука охвачен цепью обратной связи по частоте или включает в себя СФД.

В зарубежных спутниковых приемных установках широко используются специальные модули, реализующие функции отдельных узлов внутреннего блока, таких, как селектор каналов, синхронный фазовый детектор, тракт звука, формирователь радиосигнала. Большое внимание уделяется сервисным функциям: автоматическому выбору нужного канала и поляризации, управлению положением антенны. Во всех установках предусмотрен пульт дистанционного управления (ПДУ).

К ВСС относится служба радиосвязи, где сигналы космических станций предназначены для непосредственного приема населением. При этом непосредственным считается как индивидуальный, так и коллективный прием. В последнем случае программа вешания доставляется индивидуальным абонентам с помощью той или иной наземной системы распределения — кабельной или эфирной — передатчиком небольшой мощности. Заметим, что термин «радиовещание» объединяет как телевизионное, так и звуковое вещание. Определенная таким образом радиовещательная спутниковая служба включает в себя не все виды систем спутникового вещания, а только те из них, которые предназначены для приема на сравнительно простые и недорогие приемные установки, но с более низким качеством, чем этого требуют магистральные линии подачи программ на наземные вещательные станции.



Такой тип вешания называется НТВ (непосредственное телевизионное вещание). Соответствующий английский термин — DTH (Direct-To-Home, что означает «прямо домой»). Такое сокращение и такой тип вешания повсеместно используются на Западе. Проблемам DTH и соответствующей аппаратуре будут посвящены последующие разделы этой книги.

Для DTH необходим следующий минимальный комплект аппаратуры (рис. 5.5). Это прежде всего параболическая антенна, в фокусе которой установлены малошумяший усилитель и преобразователь частот, а также специальный приемник.





Малошумящий преобразователь (внешний блок) обычно обозначают как LNB (Low Noise Blockonvertor). Он усиливает и конвертирует принимаемый сигнал в другой частотный диапазон — тот, в котором работает спутниковый приемник.


Параболические антенны


6.2. Изготовление параболической антенны

6.3. Плоские и сферические спутниковые антен

6.4. Опорно-поворотные устройства




Прием сигналов спутникового телевидения осуществляется специальными приемными устройствами, составной частью которых является антенна. Для профессионального и любительского приемов передач с ИСЗ наиболее популярны параболические антенны, благодаря свойству параболоида вращения отражать падающие на его апертуру параллельные оси лучи в одну точку, называемую фокусом. Апертура — это часть плоскости, ограниченная кромкой параболоида вращения.
Параболоид вращения, который используется в качестве отражателя антенны, образуется вращением плоской параболы вокруг ее оси. Параболой называется геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой (директрисы) (рис. 6.1). Точка F — фокус и линия АВ — директриса. Точка М с координатами х, у — одна из точек параболы. Расстояние между фокусом и директрисой называется параметром параболы и обозначается буквой р. Тогда координаты фокуса F следующие: (р/2, 0). Начало координат (точка 0) называется вершиной параболы.
По определению параболы отрезки MF и РМ равны. Согласно теореме Пифагора MF^2 =FK^2+ MK^2. В то же время FK = = х - р/2, КМ = у и РМ = х + р/2, тогда (х - р/2)^2 + у^2 = (х + р/2)^2.
Возводя в квадрат выражения в скобках и приводя подобные члены, окончательно получаем каноническое уравнение параболы:
у^2 = 2рх, или у = (2рх)^0.5. (6.1)
По этой классической формуле сделаны миллионы антенн для приема сигналов спутникового телевидения. Чем же заслужила внимание данная антенна?


Параллельные оси параболоида, лучи (радиоволны) от спутника, отраженные от апертуры к фокусу, проходят одинаковое (фокусное расстояние). Условно два луча (1 и 2) падают на площадь раскрыва параболоида в разных точках (рис. 6.2). Однако отраженные сигналы обоих лучей проходят к фокусу F одинаковое расстояние. Это означает, что расстояние A+B=C+D. Таким образом, все лучи, которые излучает передающая антенна спутника и на которую направлено зеркало парабо


лоида, концентрируются синфазно в фокусе F. Этот факт доказывается математически (рис. 6.3).


Выбор параметра параболы определяет глубину параболоида, т. е. расстояние между вершиной и фокусом. При одинаковом диаметре апертуры короткофокусные параболоиды обладают большой глубиной, что делает крайне неудобным установку облучателя в фокусе. Кроме того, в короткофокусных параболоидах расстояние от облучателя до вершины зеркала значительно меньше, чем до его краев, что приводит к неравномерности амплитуд у облучателя для волн, отразившихся от кромки параболоида и от зоны, близкой к вершине.
Длиннофокусные параболоиды имеют меньшую глубину, установка облучателя является более удобной и амплитудное распределение становится более равномерным. Так, при диаметре апертуры 1,2 м и параметре 200 мм глубина параболоида равна 900 мм, а при параметре 750 мм — всего 240 мм. Если параметр превышает радиус апертуры, фокус, в котором должен находиться облучатель, располагается вне объема, ограниченного параболоидом и апертурой. Оптимальным считается вариант, когда параметр несколько больше, чем радиус апертуры.
Спутниковая антенна — единственный усиливающий элемент приемной системы, который не вносит собственных шумов и не ухудшает сигнал, а следовательно, и изображение. Антенны с зеркалом в виде параболоида вращения делятся на два основных класса: симметричный параболический рефлектор и асимметричный (рис. 6.4, 6.5). Первый тип антенн принято называть прямофокусными, второй — офсетными.




Офсетная антенна является как бы вырезанным сегментом параболы. Фокус такого сегмента расположен ниже геометрического центра антенны. Это устраняет затенение полезной площади антенны облучателем и его опорами, что повышает ее коэффициент полезного использования при одинаковой площади зеркала с осесимметричной антенной. К тому же, облучатель установлен ниже центра тяжести антенны, тем самым увеличивая ее устойчивость при ветровых
нагрузках.
Именно такая конструкция антенны наиболее распространенна в индивидуальном приеме спутникового телевидения, хотя в настоящее время используются и другие принципы построения наземных спутниковых антенн.


Офсетные антенны целесообразно использовать, если для устойчивого приема программ выбранного спутника необходим размер антенны до 1,5 м, так как с увеличением общей площади антенны эффект затенения зеркала становится менее значительным.
Офсетная антенна крепится почти вертикально. В зависимости от географической широты угол ее наклона немного


меняется. Такое положение исключает собирание в чаше антенны атмосферных осадков, которые сильно влияют на качество приема.
Принцип работы (фокусировки) прямофокусной (осесимметричной) и офсетной (асимметричной) антенн показан на рис. 6.6.
Для антенн особое значение имеют характеристики направленности. Благодаря возможности использовать антенны с высокой пространственной избирательностью осуществляется прием спутникового телевидения. Важнейшими характеристиками антенн являются коэффициент усиления и диаграмма направленности.
Коэффициент усиления параболической антенны зависит от диаметра параболоида: чем больше диаметр зеркала, тем выше коэффициент усиления.
Зависимость коэффициента усиления параболической антенны от диаметра приведена ниже.


Роль коэффициента усиления параболической антенны можно проанализировать с помощью электрической лампочки (рис. 6.7, а). Свет равномерно рассеивается в окружающее пространство, и глаз наблюдателя ощущает определенный уровень освещенности, соответствующий мощности электролампочки.


Однако если источник света поместить в фокус параболоида с коэффициентом усиления 300 раз (рис. 6.7, б), его лучи после отражения поверхностью параболоида окажутся параллельны его оси, а сила цвета будет эквивалентна источнику мощностью 13 500 Вт. Такую освещенность глаз наблюдателя воспринять не может. На этом свойстве, в частности, основан принцип работы прожектора.
Таким образом, антенный параболоид, строго говоря, не является антенной в ее понимании преобразования напряженности электромагнитного поля в напряжение сигнала. Параболоид — это лишь отражатель радиоволн, концентрирующий их в фокусе, куда и должна быть помешена активная антенна (облучатель).


Диаграмма направленности антенны (рис. 6.8) характеризует зависимость амплитуды напряженности электрического поля Е, создаваемого в некоторой точке, от направления на эту точку. При этом расстояние от антенны до данной точки остается постоянным.
Увеличение коэффициента усиления антенны влечет за собой сужение главного лепестка диаграммы направленности, а сужение его до величины менее 1° приводит к необходимости снабжать антенну системой слежения, так как геостационарные спутники совершают колебания вокруг своего стационарного положения на орбите. Увеличение ширины диаграммы направленности приводит к снижению коэффициента усиления, а значит, и к уменьшению мощности сигнала на входе приемника. Исходя из этого, оптимальной шириной главного лепестка диаграммы направленности яв-


ляется ширина в 1...2° при условии, что передающая антенна спутника удерживается на орбите с точностью ±0,1°.
Наличие боковых лепестков в диаграмме направленности также снижает коэффициент усиления антенны и повышает возможность приема помех. Во многом ширина и конфигурация диаграммы направленности зависят от формы и диаметра зеркала принимающей антенны.
Самой важной характеристикой параболической антенны является точность формы. Она должна с минимальными ошибками повторять форму параболоида вращения. Точность соблюдения формы определяет коэффициент усиления антенны и ее диаграмму направленности.
Изготовить антенну с поверхностью идеального параболоида практически невозможно. Любое отклонение от реальной формы параболического зеркала от идеальной влияет на характеристики антенны. Возникают фазовые ошибки, которые ухудшают качество принимаемого изображения, снижается коэффициент усиления антенны. Искажение формы происходит и в процессе эксплуатации антенн: под воздействием ветра и атмосферных осадков; силы тяжести; как следствие неравномерного прогрева поверхности солнечными лучами. С учетом этих факторов определяется допустимое суммарное отклонение профиля антенны.
Качество материала также влияет на характеристики антенны. Для изготовления спутниковых антенн в основном используют сталь и дюралюминий.


Стальные антенны дешевле алюминиевых, но тяжелее и больше подвержены коррозии, поэтому для них особенно важна антикоррозийная обработка. Дело в том, что в отражении электромагнитного сигнала от поверхности участвует очень тонкий приповерхностный слой металла. В случае повреждения его ржавчиной значительно снижается эффективность антенны. Стальную антенну лучше сначала покрыть тонким защитным слоем какого-нибудь цветного металла (например, цинка), а затем покрасить.
С алюминиевыми антеннами этих проблем не возникает. Однако они несколько дороже. Промышленность выпускает и пластиковые антенны. Их зеркала с тонким металлическим покрытием подвержены искажениям формы за счет различных внешних воздействий: температуры, ветровых нагрузок и ряда других факторов. Существуют сетчатые антенны, устойчивые к ветровым нагрузкам. Они имеют хорошие весовые характеристики, но плохо зарекомендовали себя при приеме сигналов Ки-диапазона. Такие антенны целесообразно использовать для приема сигналов С-диапазона.
Параболическая антенна на первый взгляд кажется грубым куском металла, но тем не менее она требует аккуратного обращения при хранении, транспортировке и монтаже. Любые искажения формы антенны приводят к резкому снижению ее эффективности и ухудшению качества изображения на экране телевизора. При покупке антенны необходимо обратить внимание на наличие искажений рабочей поверхности антенны. Иногда бывает, что при нанесении антикоррозийных и декоративных покрытий на зеркало антенны ее «ведет» и она приобретает форму пропеллера. Проверить это можно, положив антенну на ровный пол: края антенны везде должны касаться поверхности.

Изготовление параболической антенны


6.2. Изготовление параболической антенны
В промышленных условиях параболоид вытягивается из дюралюминиевого или стального листа с помощью мощных гидравлических прессов. К другой разновидности относятся параболоиды, изготовленные из пластических масс методом литья с последующей металлизацией поверхности напылением. В любительских условиях использовать оба метода


практически невозможно. Однако в специальной литературе неоднократно были описаны достаточно простые технологии изготовления самодельных параболоидов методом выклейки стеклотканью по шаблону с последующей оклейкой металлической фольгой. В тех же источниках приведены готовые таблицы вычисленных координат параболы одного определенного параметра, что позволяет избавиться от несложного, но громоздкого расчета. Если окажется, что целесообразно использовать параболу с другим значением параметра, такой расчет можно выполнить по формуле (6.1).
Можно доверить расчет параболоида и электронно-вычислительной машине (ЭВМ). В табл. 6.1 приведен результат расчета самой выгодной формы параболоида, сделанный с помощью ЭВМ. Здесь значения абсциссы Х (согласно рис. 6.9) заданы через 5 мм в интервале 0...1000 мм. Соответственно значениям Х в средней колонке приведены значения ординат Y. Результаты расчетов параболоида Yinv по значениям Х и Y приведены в правой колонке. Расчет сделан для фокусного расстояния 750 мм, которое обычно выбирается в пределах 0,2...0,4 от диаметра параболоида.
По координатам (табл. 6.1) из стального листа толщиной 4...5 мм изготавливается лекало-шаблон (рис. 6.10). К нему прикручиваются угольники (ребра) жесткости. Приваривать их к шаблону с помощью сварки нежелательно, так как при охлаждении металла могут нарушиться размеры лекала.


Лекало закрепляется в точке А на мощном поворотном устройстве (рис. 6.11) на конических подшипниках. Одна обойма подшипника закрепляется к полу (6), а другая — к потолку (3). Соединяются они с помощью оси, в центре которой установлено лекало. Оно находится на расстоянии 70...80 мм от пола (если шаблон разместить ниже, то неудобно будет работать).


Пространство от пола до лекала заполняется кирпичами или камнями, а верхний слой изготавливается из армированного стальным проводом бетона.








Поворачивая шаблон, выравнивают верхний слой раствора. Добавляют немного сильного раствора, который состоит из цемента и мелкого гравия с песком (1:1). Перед смешиванием песок желательно просеивать через сито. Пo мере усадки нижнего слоя периодически добавляют новый раствор. Бетонная глыба имеет обратную форму параболы, поэтому она должна быть сделана с точностью до 0,5 мм.
Через одну-две недели поверхность глыбы шлифуют наждачной бумагой и покрывают парафином, устраняя небольшие неровности. Затем всю поверхность обмазывают воском или маслом и легко полируют. После такой обработки форма готова для формирования первой антенны-параболы.


Изготавливать форму-глыбу из гипса нежелательно, так как он очень быстро застывает. Форму можно делать из дерева (фанерных шайб), однако это более трудоемко. Подготовив форму, лекало и ось удаляют из центра. Следующий этап — наклейка антенны.
В качестве арматуры для антенны используют стеклоткань или другую плотную и гладкую ткань. Парабола клеится эпоксидной или полиэфирной смолой, или синтетическим столярным клеем. Клеящее вещество наносят тонким слоем на бетонную форму с помощью кисточки или пульверизатора. При этом эпоксидная смола должна быть перемешана с отвердителем. В этот раствор желательно добавить заполнитель, который предупреждает стекание смолы (например, мелко нарезанный порошок пенопласта). Затем на бетонную форму накладывают первый слой ткани (лучше цельный кусок на всю поверхность). Снова намазывают клей и накладывают второй слой, но уже из более грубой ткани. Так, не давая засохнуть нижним слоям, накладывают 3...5 слоев ткани.
Затем приступают к изготовлению восьми радиальных и двух окружных ребер жесткости. Первое окружное делают по краю антенны, второе (диаметром примерно 1000 мм) — накладывают посередине. Ребра жесткости делают из пластин пенопласта, ширина и высота которых равна 100 мм, длина — 300 мм. Куски пенопласта приклеивают по окружности и радиусам. Через окружное ребро твердости заворачивают лишние края ткани и тем самым формируют красивый бортик антенны.


Радиальные и центральные ребра жесткости оклеивают двумя-тремя слоями стеклоткани. В перекрестьях радиальных ребер с центровым необходимо вклеить кусочки дерева размером 50 х 50х 50 мм. На следующем этапе к ним будет крепиться антенна с площадкой поворотного механизма.
Металлические детали и ребра жесткости заклеивать в конструкцию антенны нежелательно, так как у металла и эпоксидной смолы разные коэффициенты расширения. После отвердения клея, через сутки-двое, антенну снимают с формы, обезжиривают поверхность и начинают самую ответственную операцию — оклейку фольгой отражающей поверхности. Зеркало параболы изготавливают из полосок алюминиевой фольги, которую приклеивают только медленно засыхающим клеем БФ-2. Ширину фольги подбирают экспериментально. Наклеивать полоски нужно очень аккуратно: чем меньше складок, тем лучше будет отражение принимаемого сигнала. В процессе клейки фольги следует быть осторожным, так как можно порезать пальцы.
В фокусе осесимметричной антенны устанавливают конвертер. Чтобы неподвижно поддерживать его в этой точке, в конструкции антенны предусматривают дополнительное приспособление (рис. 6.12). Приспособление для крепления головки изготавливают из трех дюралюминиевых трубок, которые прикручивают к металлической шайбе с отверстием в центре для головки. По краям параболической антенны трубки закрепляют уголками. Точки крепления дюралюминиевых трубок размещают через 120° по поверхности антенны.
Необходимо точно вычислить и затем обозначить крестиком центр параболоида. Параболоид устанавливают строго горизонтально и отвесом центрируют центр фокусной шайбы на трех дюралюминиевых трубках. Шайба должна находиться за фокусом на расстоянии 3...5 см от действительного фокуса. Это необходимо для свободного движения конвертера, настройки на наибольший сигнал.


Форму для выклейки параболических антенн меньшего диаметра (1,0..Л,2 м) можно сделать другим способом. Рекомендуется такая последовательность изготовления формы.
Из стальной проволоки диаметром 4...5 мм делают каркас (рис. 6.13: точками обозначены места сварки элементов каркаса). Меридиональные (продольные) ребра каркаса предварительно изгибают по простейшему шаблону из толстой фанеры. Кривую для изго-




товления шаблона можно построить на миллиметровой бумаге как эквидистанту(равноотстоящую) с зазором 20...25 мм относи тельно профиля па раболоида, рассчи танного по фор муле (6.1) при фо кусном расстоянии F = 450 мм. Затем каркас обтягивают мелкоячеистой сет кой, закрепив ее проволокой.
Далее изготав ливают лекало-шаб лон (рис. 6.14) из листового дюралю миния или стали толщиной 4...5 мм;
ось — из латуни или дюралюминия; втул ку — из стали. Отверстие во втулке и ось шаблона изготавливают с допуском, обеспечивающим скользящую посадку по второму-третьему классу. Например, при диаметре оси 30 мм допуски для втулки и оси равны соответственно +0,021 и - 0,021 мм.


Перед заливкой горки в каркас вставляют соосно и фиксируют втулку шаблона (рис. 6.15). Каркас заливают раствором из малоусадочного цемента или смесью песка с жидким стеклом. При этом необходимо дать возможность схватиться нижним слоям раствора. Толщина купола готовой формы не должна превышать 20...25 мм, иначе она будет долго сохнуть. Верхний слой купола формируют, соскабливая шаблоном лишний, не совсем застывший раствор (рис. 6.16).
После высыхания формы в течение нескольких дней на ее поверхности могут появиться тре




щины. Их замазывают раствором эпоксидной смолы с наполнителем и снова выравнивают шаблоном. После полного высыхания поверхность зачищают мелкой наждачной бумагой.

Плоские и сферические спутниковые антенны


6.3. Плоские и сферические спутниковые антенны
В настоящее время в спутниковом непосредственном телевизионном приеме (СНТП) в качестве антенн наиболее широко применяются два основных параболоида вращения:
осесимметричный и офсетный. Трудоемкость изготовления параболического отражателя вынудила искать альтернативные конструкции антенн, более технологичных в производстве и самостоятельном изготовлении. К таким конструкциям относится плоский зональный отражатель Френеля (рис. 6.17).
Огюстен Жан Френель (1788—1828), французский физик, один из основателей волновой оптики, в процессе изучения дифракции света использовал метод разделения фронта волны на кольцевые зоны, названные впоследствии его именем.
Зональная антенна Френеля (ЗАФ) по принципу действия существенно отличается от обычно используемых антенн, содержащих в основе параболический отражатель. Описание антенны и методика ее расчета составлены В. Никитиным (Москва) и автором данной книги.
Антенный отражатель Френеля представляет собой проводящие концентрические кольцевые поверхности, расположенные в одной плоскости. Под воздействием падающей волны электромагнитного поля согласно принципу Гюйгенса каждое кольцо становится источником вторичного излуче-




ния, которое направлено в разные стороны в отличие от параболоида вращения, отражающего все лучи в направлении фокуса. Можно подобрать такую ширину каждого кольца зональной антенны и расстояние между ними, чтобы сигналы вторичного излучения от средних линий каждого кольца в определенной точке пространства совпадали по фазе. Для этого достаточно, чтобы расстояния между средними линиями колец и указанной точкой отличались на длину
волны сигнала — lв. Эту точку по аналогии с параболоидом можно назвать фокусом. В фокусе, как и в параболической антенне, находится облучатель.
На рис. 6.18 показано сечение (вид сбоку) верхней части центрального диска антенны и первого кольца. Если в качестве фокуса выбрана точка, которая находится на расстоянии f от плоскости с кольцами, то сигналы, излученные серединами колец, будут совпадать по фазе в фокусе при следующих значениях расстояний между краями колец и фокусом:




Сигналы, излученные серединой колец, оказываются в фазе с сигналом, излученным центром диска. Расфазировка между сигналами, излученными кромкой диска и его центром, а также кромками колеи и их серединой, составляет всего 1/4 длины волны.
Таким образом, расчет ЗАФ сводится к выбору места расположения фокуса F на воображаемой оси антенны, т. е. расстояния f от полотна антенны, и вычислению внутренних и наружных радиусов колец в зависимости от длины волны л, ретранслятора по формуле (6.2). Расстояние f не критично
и его выбирают в пределах 500...1000 мм (для антенн больших диаметров).
Сигналы, которые излучают края колеи, отличаются по фазе от сигналов, которые излучает окружность (находится в середине кольца), обеспечивающая синфазность. Широкие кольца обеспечивают широкополосность антенны. В связи с тем, что радиусы колеи ЗАФ зависят от длины волны сигнала, может показаться, что антенна является узкополосной и для каждой частоты (или длины волны) спутникового транспондера понадобятся соответствующие размеры колец. Однако расчеты показывают, что это не так.
Если радиусы колец рассчитаны для средней частоты диапазона 10,7...11,7 ГГц (длина волны 26,8 мм) или 11,7...12,5 ГГц (длина волны 24,8 мм), то для минимальной и максимальной частот диапазонов те окружности, которые соответствуют равенству фаз сигналов, будут располагаться на поверхности колец.
В табл. 6.2, 6.3 приведены результаты расчета размеров ЗАФ для указанных диапазонов частот. В формулу (6.2) последовательно подставляли в качестве значения n орядковые номера радиусов (четные номера соответствуют внутренним радиусам, нечетные — наружным, a r1— радиусу центрального диска). Расстояние f от центрального диска до фокуса F выбрано равным 1000 мм. Ширина колец уменьшается равнозамедленно. Радиолюбителю не обязательно изготовлять ЗАФв полном объеме. В случаях, когда в месте приема используется параболическая антенна диаметром 90 см, в конструкции ЗАФ можно ограничиться пятью кольцами (пятому кольцу соответствуют радиусы г10 и r11). При этом для диапазона частот 10,7...11,7 ГГц диаметр ЗАФ равен 1098 мм, для 11,7...12,5 ГГц — 1024 мм.


Таблица 6.2






Если рассчитать радиусы колеи для средней длины волны всего вещательного диапазона Ки (10,7...12,75 ГГц), на его краях эти «синфазные» окружности выходят за пределы поверхности колец. Поэтому на краях такого широкого диапазона синфазного сложения сигналов не получается.


В результате расчета получают радиусы «синфазных» окружностей, где п—номер кольца. Центральному диску соответствует n = 1. Ширину выбирают произвольно. На практике можно изготовить центральный диск радиусом 50 мм, а ширину каждого кольца взять равной 20 мм. В этом случае синфазная окружность находится примерно в середине кольца.
Зональная антенна плоская по форме, поэтому она значительно технологичнее в любительских условиях изготовления. Такая антенна может быть выполнена из большого куска фольгированного пластика или методом травления, или путем вырезания промежутков между кольцами. Ее также можно изготовить наклейкой колец из фольги или ровной жести на лист гетинакса, текстолита, оргстекла, древесно-волокнистого полотна (ДВП). Для снижения ветровой нагрузки в диэлектрическом основании антенны просверливают произвольное количество отверстий.
Основным недостатком зональной антенны по сравнению с параболической такого же диаметра является меньший коэффициент усиления, так как не вся энергия сигнала, попадающая на полотно антенны, направляется к облучателю. В условиях слабого сигнала потеря усиления даже на 2 дБ приводит к поражению сигнала шумами и потере цветности. Для компенсации недостатка коэффициента усиления ЗАО необходимо увеличивать диаметр полотна антенны, хотя при достаточной мощности спутникового ретранслятора и больших углах места (меньше влияют тепловые шумы Земли) для данной точки приема такая антенна обеспечивает хорошие результаты.
Закрепить конвертер в фокусе ЗАФ можно тем же способом, что и для прямофокусной параболической антенны (см. рис. 6.12).
Ряд зарубежных фирм производит плоские антенны, которые представляют собой систему из большого количества излучателей (простейших полуволновых вибраторов). Они расположены во много рядов и этажей, соединенных между собой фидерными линиями. Такая конструкция плоской антенны называется антенной решеткой (АР).


Точки питания вибраторов в этажах и рядах соединены таким образом, что принятые каждым вибратором сигналы складываются в фазе. В точках питания АР мощность сигнала равна сумме мощностей, принятых всеми вибраторами. В
этих же точках находятся входные клеммы приемной части устройства (конвертера), куда поступает принятый решеткой суммарный по мощности сигнал.
Например, для частоты 12 ГГц синфазная решетка состоит из 2304 полуволновых вибраторов, размешенных в 48 рядов и 48 этажей. Такая решетка имеет размеры 600 х 600 мм, ширина ее диаграммы направленности в обеих плоскостях по половинной мощности составляет 4,2° без учета ее сужения за счет диаграмм направленности вибраторов. Конструктивно решетку можно выполнить известным печатным способом путем травления фольгированного пластика. Однако фольгированные гетинакс или текстолит, даже стеклотекстолит непригодны из-за чрезмерно больших потерь в диапазоне сантиметровых волн. Наполнитель стеклотекстолита (стекловолокно) характеризуется хорошими электрическими свойствами, но связующее звено, которым является фенолформальдегидная смола, в этом диапазоне имеет чрезмерно большое значение угла потерь tgВ. Лучше использовать фторопласт или ударопрочный полистирол, а также органическое стекло.
Плоские антенны очень технологичны в производстве, а синфазная решетка имеет дополнительные преимущества по сравнению с зональной антенной Френеля, так как не нуждается в облучателе и ее выходные клеммы можно расположить в плоскости самой антенны. Сложность использования синфазной решетки заключается в необходимости такого соединения вибраторов с клеммами антенны, чтобы принятые всеми вибраторами сигналы поступали к выходу антенны с одинаковой фазой.
Фирма «Blaupunkt» выпускает квадратную планарную антенну, в которой вибраторы расположены в одной плоскости (рис. 6.19). Радиоволны через диффузное (пористое) синтетическое покрытие попадают на металлические элементы-облучатели, напыленные на тонкопленочные подложки. Алина этих элементов кратна длине волны принимаемого сигнала и все они синфазно подключены к направленным на конвертер собирательным шинам, которые сведены к центру квадрата.


При соответствующих размерах синфазной АР и количестве вибраторов коэффициент усиления такой плоской решетки может быть не ниже, чем у антенны с параболическим отражателем. Это связано с тем, что у синфазной решетки узкая диаграмма направленности, так как в фазе складываются только сигналы, поступающие к решетке перпендикулярно ее плоскости.
Кроме того, достоинствами плоских антенн являются возможность их изготовления методами печатного монтажа,


что обеспечивает высокую воспроизводимость параметров;
снижение на 10...30% ветровой нагрузки по сравнению с параболическими антеннами; простота перевозки, хранения
и установки.
Если фазы всех излучателей плоской АР равны, то суммарный луч диаграммы направленности расположен перпендикулярно плоскости антенны (рис. 6.20).
Однако если ввести в фидерные линии синфазной АР фазовращатели (ФВ) и менять фазу сигнала в каждом излучателе, то в определенном (заданном) направлении сигналы придут в фазе и усилят друг друга. Такая антенная
решетка называется фазированной (ФАР). Диагональ антенны расположена перпендикулярно поверхности земли (рис. 6.21; 6.22).
В технологии решетки заложена возможность установки управляемых ФВ одновременно с излучающими элементами. В устройстве фазовращателя используются полупроводниковые диоды, или варакторы.
В зависимости от количества принимаемых с различных спутников программ количество ФВ может равняться 12 или 24. Система фазоврашателей из 12 диодов может вести прием в секторе ±8°, система из 24 диодов — в секторе ±16°.
В фазоврашателях используют интегральные микросхемы (ИМС). Таким образом, возможна распайка ФВ на той же печатной плате, где вытравлены излучатели.
В настоящее время внимание к АР значительно возросло в связи с достижениями в области изготовления печатных плат и созданием новых высококачественных диэлектрических материалов с малым углом потерь. Относительная простота их изготовления в заводских условиях обеспечивает производство большого количества антенных элементов и всех фидерных линий в едином технологическом цикле.


Отличием ФАР от используемых сегодня параболоидов вращения является микросекундное переключение луча на нужный спутник, в то время как в электромеханических системах с параболическим зеркалом этот процесс занимает десятки секунд и даже несколько минут.
Конвертер, прикрепленный к обратной стороне плоской печатной антенны, не затеняет апертуру. Невосприимчивость к воздействию прямых солнечных лучей, ветра и дождя гарантирует качественную работу конвертера в сложных климатических условиях.
Плоская форма и сравнительно небольшие габариты антенны (например, 65 х 65 см) не нарушают эстетичного внешнего вида здания и при ее установке не требуют согласования с архитектурными организациями.
Внедрение ФАР открывает новые, удобные для пользователя режимы работы (автопоиск спутников с последующим запоминанием координат и мгновенное переключение на нужный спутник), что в свою очередь позволяет использовать их в СНТВ, устанавливаемых на подвижных объектах.
Сегодня эксплуатируется еще один вид спутниковой антенны — сферическая спутниковая антенна. Она имеет оригинальную конструкцию: шарообразная линза из диэлектрика, фокусирующая сигнал со спутника на концентрическую с фокальной плоскостью (рис. 6.23).




Работа антенны аналогична процессу видения боковым зрением. Ведь мы видим не только то, что находится перед нами, но и в значительном секторе как по горизонтали (90...940), так и по вертикали (70...770).
По конструкции сферическая антенна напоминает планету Сатурн, на поясе (кольце) которой (фокальная плоскость) укреплено несколько конвертеров. Сферическая антенна многоспутниковая. Это означает, что на одну такую антенну одновременно можно принимать сигналы нескольких спутников, находящихся на разных позициях ГСО. При этом необходимо установить на кольце сферической антенны конвертеры для каждого выбранного спутника.
Одна сферическая антенна диаметром 1,0...1,5 м может заменить семь-восемь параболических антенн соответствующих размеров, охватывая по азимуту сектор до 90...1250 и по углу места — 40...600.
Следует отметить, что сферическая антенна не требует позиционера и опорно-поворотных устройств (ОПУ).
Экспериментальные образцы сферических антенн производят ряд зарубежных фирм и российская фирма «Конкур».


Опорно-поворотные устройства


Для точной ориентации параболической антенны на ИСЗ в ее конструкции необходимо предусмотреть поворотные механизмы, которые позволяют изменять положение антенны по горизонтали и вертикали, жестко фиксировать выбранное направление (рис. 6.24 — 6.30).

Стойку антенны сваривают из стальных труб и обязательно закрепляют на фундаменте. При большом диаметре параболоида «ветровое» давление на его зеркало может достигать нескольких сот килограммов. Для обеспечения






устойчивости и работоспособности антенны при скорости ветра до 25...30 м/с опорная стальная труба должна иметь диаметр 90...100 мм и толщину стенки 4...5 мм (высота трубы — 1,2...2,0 м). Основание и раскосы для трубы лучше всего изготавливать из стального швеллера, ширина полки которого 40...50 мм. Для изготовления других силовых элементов конструкции (азимутальной втулки, угломестной рамы и других узлов) целесообразно использовать стальной уголковый прокат. Неподвижные соединения деталей из стали лучше делать электросваркой, что уменьшит люфты.



Чтобы знать, на какой спутник в данный момент ориентирована параболическая антенна, необходимо оснастить ее указателями поворота. Если антенна хорошо видна, можно установить на ней достаточно большие шкалы, показывающие углы поворота и подъема. Если такой вариант нецелесообразен, можно сделать электронное устройство управления антенной (рис. 6.31; 6.32).

В качестве датчиков углов поворота антенны используются обычные переменные резисторы (например, типа СП-1). Номиналы их сопротивлений не критичны. Они не обязательно должны быть одинаковыми, но их линейная характеристика должна быть типа А.

В качестве индикаторов используются миллиамперметры со стрелкой посередине. Калибровку показаний осуществляют следующим образом (рис. 6.32). Параболическую антенну устанавливают так, чтобы она приняла горизонтальное положение, и резистором R3 выставляют на «ноль» стрелку прибора РА1. Затем антенну поворачивают на 25°, чтобы она приняла вертикальное положение, и устанавливают стрелку прибора на крайнее деление шкалы. При этом резистор R5 находится в среднем положении.




Для регулировки горизонтального поворота антенну устанавливают в южном направлении. При этом резистор R6 на антенне также находится в среднем положении. Резистором R2 устанавливают на «нуле» стрелку прибора РА2. Поворачивают антенну на 90° и резистором R4 устанавливают стрелку прибора на крайнее деление шкалы.
Ручные механизмы для наведения параболической антенны часто представляют собой конструкцию типа «винт — качающаяся гайка» (рис. 6.33; 6.34).


На одном конце ходового винта на ОПУ шарнирно закреплена втулка (4), допускающая безлюфтовое вращение в ней винта (3). Гайка (5), через которую проходит винт (3), также выполнена в виде шарнира, установленного на другом элементе конструкции ОПУ, при повороте винта смещающейся (поворачивающейся) относительно элемента с прикрепленной к нему втулкой (4). Шарниры (2) позволяют изменить угловое положение ходового винта (3) при изменении взаимного положения узлов ОПУ (6), на которых шарнирно закреплены гайка (5) и втулка (4) механизма. Механизм наведения приводится в движение с помощью рукоятки (1).


Наведение антенны на спутник


Оптимальное место установки спутниковой антенны — балкон или лоджия со свободным обзором в южном направлении, т. е. без затеняющих предметов (например, зданий или деревьев), на воображаемой линии, соединяющей антенну и спутники. Установить ее можно также на стене около окна, на крыше, на глухом участке стены. В сельской местности антенну часто устанавливают непосредственно на земле (рис. 7.1).

Желательно, чтобы антенна находилась вблизи телевизора, а место ее установки было доступно для владельца. Это значительно облегчает обслуживание антенны, а также прокладку соединяющего их фидера. Нельзя устанавливать антенну под крышей, так как прием слабого сигнала с передатчика ИСЗ окажется невозможным.

Когда антенна должна принимать телевизионные передачи со многих спутников, необходимо учесть то, что с Юга должны просматриваться Запад и Восток на угол 65°. В этом 130-градусном угле и находятся крайние спутники. В простейшем случае углы отклонения от Юга на Запад и Восток можно измерить транспортиром. Его прикладывают к вертикальному штырю или отвесу и просматривают над транспортиром местность — нет ли препятствия. Измерение выполняют точнее с помощью теодолита или угломерных приборов.

Географический Юг определяют только при солнечной погоде в точный временной полдень. Точное время полдня зависит от географического расположения населенного пункта и ряда других факторов. Например, время полдня для Минска — 12 ч 54 мин...13 ч 22 мин.

Для определения направления на Юг на горизонтальной плоскости, выверенной по уровню, устанавливают по отвесу


вертикальный штырь и следят за его тенью, отмечая ее длину (рис. 7.2). Наиболее короткой тень бывает в истинный полдень, когда она направлена на Север. В связи с тем что вблизи полдня длина тени изменяется мало, отмечают две равноудаленные от штыря точки конца тени и проводят между ними линию Север — Юг.

Далее устанавливают строго вертикально (по отвесу) опорную трубу. Антенну поворачивают на Юг так, чтобы полярная ось ОПУ и ось параболы лежали в меридиональной плоскости, проходящей через ось опорной трубы и отмеченным штырьками направлением на Юг (рис. 7.2). Антенну жестко собирают и закрепляют в выбранном для установки месте. Следует учесть, что при настройке антенну придется немного поворачивать в вертикальной и горизонтальной плоскостях, поэтому окружающие предметы не должны препятствовать этому движению. С особой осторожностью необходимо обращаться с зеркалом антенны, так как малейшие его деформации могут привести к резкому снижению качества принимаемого сигнала.




При установке приспособления для крепления конвертера металлические трубки равномерно закрепляют на краях параболы, чтобы не деформировать зеркало антенны (рис. 7.3). Конвертер в держателе ориентируют соединителем вниз, чтобы снизить вероятность проникновения воды внутрь конвертера. Желательно предусмотреть влагозащитную петлю (рис. 7.3).

Полезно подумать и о заземлении антенны.







Если она не заземлена, это может привести к выходу из строя конвертера под воздействием статического электричества или выгоранию входного высокочастотного тракта приемной установки из-за удара молнии. И то и другое происходит очень редко, но вероятность таких аварий существует. Обычно в центре параболической антенны просверливают отверстие и с помощью болта и гайки с шайбами прикручивают провод заземления диаметром 4...6 мм (рис. 7.4). Далее провод соединяют с за-землителем, в качестве которого могут использоваться трубы, кусок металла, лист жести, находящиеся на глубине 1,5...2 м. Если держатель конвертера не металлический, то к корпусу LNB присоединяют провод для снятия электростатических зарядов. Антенны, установленные на балконах, лоджиях, стенах зданий, не требуют дополнительного заземления, так как здания, как правило, оснащены автономным заземлением. В тех случаях, когда заземление необходимо (антенна установлена на возвышенности и рядом нет высоких сооружений, оснащенных заземлением), дополнительно устанавливают молние-







отвод — металлический штырь, который должен возвышаться на 1,5...2 м над антенной. Это лучший способ защиты антенны от молнии, он не требует заземления спутниковой антенны.

Антенна должна быть оснащена юстировочным устройством для точного наведения на ИСЗ по двум координатам:

азимуту и углу места (рис. 7.5).

Угол места — это угол между направлением на спутник и плоскостью горизонта. Азимут — отклонение спутника от направления на Север и плоскостью горизонта (по часовой стрелке).

Геостационарные ИСЗ размещены на круговой орбите, плоскость которой совпадает с экваториальной плоскостью Земли и характеризуется одной координатой — восточной или западной долготой.



Линии широты и долготы используются для описания места установки приемной спутниковой антенны (рис. 7.6, 7.7).

Если бы точка приема находилась на экваторе, ориентировать антенну на спутник можно было бы по одной координате (по углу места), поворачивая антенну в той же плоскости. Когда точка приема находится не на экваторе, при разных значениях долготы спутников направления на них отличаются углами места и азимутами. Зная достаточно точно долготу ИСЗ и координаты точки приема (широту и долготу), можно вычислить необходимое направление антенны на этот спутник по азимуту и углу места.

Тем не менее абсолютно точно определить нужное направление антенны на спутник невозможно из-за неточности известных координат наземной точки приема и отсчета азимутального направления антенны (при использовании компаса возникают ошибки из-за наличия магнитного склонения и влияния магнитных масс), а также неточностей выполнения антенного отражателя и установки облучателя.

Ширина главного лепестка диаграммы направленности параболоида очень мала. Без предварительного определения необходимого направления антенны на спутник методом вычисления практически невозможно «поймать» его сигнал, а после ориентирования по результатам вычислений следует осуществить тонкую юстировку направления антенны непосредственно по приему сигнала спутникового ретранслятора.

Направление антенны на спутник путем вычисления азимута А и угла места М оси параболоида определяют в следующем порядке. Сначала вычисляют разность долгот:



где в1 — долгота точки приема (см. табл. 7.1); (в2 — долгота спутника (см. рис. 4.3).

Здесь значения долготы следует подставлять с учетом знака (при западной долготе — с отрицательным знаком, при восточной — с положительным).

Затем определяют угловое расстояние между точкой приема и положением спутника над экватором:

С = arccos (cosв cosu).

Здесь (u — северная широта точки приема. Рассчитывают азимут А направления антенны на спутник:

A=180±arctg(в)/sin(u)

Здесь знак плюс используется, когда спутник расположен западнее точки приема, а минус — когда он восточнее.



Угол места М направления антенны над горизонтальным направлением вверх вычисляют по формуле

М=arctg(cosC-0,15105)/sinC

В табл. 7.1 указано географическое положение некоторых населенных пунктов Республики Беларусь. Координаты точки приема используют с максимальной точностью. Большие города, например Минск, достаточно протяженные, поэтому координаты 53°54'северной широты и 27°30'восточной долготы относятся только к телевизионной башне на набережной реки Свислочь. Для других районов Минска эти координаты будут усредненными и могут привести к неточностям в расчетах. Координаты точки приема можно определить по топографической карте.







Для оперативного определения угла места и азимута направления наземной антенны на ИСЗ можно воспользоваться рис. 7.8. На диаграмме приняты следующие обозначения: (uо — географическая широта точки размещения наземной спутниковой антенны (вверх от 0 — северная широта, вниз — южная); d — долгота установки антенны; d0 — положение ИСЗ на ГСО (см. рис. 4.3); d-d0 — координаты

подспутниковой точки.

Для ориентации антенны на спутники НОТ BIRD, EUTELSAT II F1 (d=13°Е) в Минске вначале определяют координаты под-спутниковой точки:

d-d0=27°-13°=14°30'.

Получилось положительное значение координаты под-спутниковой точки, поэтому на диаграмме его откладывают по линии d-d0 вправо от точки 0. Затем по линии (u0 вверх от точки 0 откладывают значение 54° северной широты. На пересечении пунктирных линий, проложенных от этих координат, определяют азимут. По диаграмме он равен 200°.

Для определения угла места от точки азимута необходимо вправо (так как значение подспутниковой точки явля-



ется положительным) провести кривую до пересечения с линией отсчета углов места. Получаем значение угла места 28°.

Если вычислять азимут и угол места по приведенным выше формулам, получим следующие значения: А = 197,77° и М= 27,14°.

Из этого следует, что точное значение А и М по приведенной диаграмме определить практически невозможно. Однако пользоваться диаграммой необходимо, так как установщик антенны знает направление ориентации на выбранной ИСЗ. Более точной ориентации антенны на ИСЗ можно достигнуть при включенном комплексе спутниковой аппаратуры по наибольшему принимаемому сигналу (наилучшее качество изображения и звука для этой точки приема).



В комплект спутниковой антенны кроме параболического отражателя входят системы подвески и крепления антенны.

В соответствии с типами этих систем спутниковые антенны подразделяются на азимутальные и полярные. Азимутальные антенны способны настраиваться на выбранный спутник и жестко фиксироваться. Полное точное название этого типа подвески — азимутально-угломестная, так как ориентирование антенны (поворот антенны) осуществляется по двум координатам: по азимуту и углу места.

Отличительная особенность этого способа ориентирования состоит в том, что для поворота по азимуту антенна вращается вокруг оси, расположенной перпендикулярно относительно поверхности Земли, которая называется азимутальной осью ОПУ антенны. На любой широте точки приема, за исключением северного и южного полюсов, азимутальная ось пересекает плоскость экватора и соответственно плоскость ГСО под острым углом. Это приводит к тому, что каждому спутнику, находящемуся на ГСО, соответствуют для данной точки приема персональные значения азимута и угла места направления антенны. В случае переориентации антенны с одного спутника на другой приходится изменять направление антенны по азимуту и углу места. Поэтому в данной системе антенна поворачивается в горизонтальной плоскости (по азимуту) электродвигателем с редуктором и в вертикальной плоскости (по углу места) вторым электродвигателем с редуктором (см. рис. 6.24—6.31).

Все геостационарные спутники находятся на одной линии, которая представляет собой окружность. Поэтому есть возможность вести ориентацию антенны только по одной кривой с помощью одного поворотного устройства. Для этого антенна должна вращаться по азимуту не вокруг вертикальной азимутальной оси, а вокруг дополнительной оси, параллельной оси вращения Земли, которая соединяет северный и южный географические полюсы. В связи с тем что в направлении оси вращения Земли находится Полярная звезда, эта дополнительная ось называется полярной осью.

Эта система ориентации подвески была изобретена для астрономических приборов. Она позволяет принимать сотни телевизионных программ с различных ИСЗ (рис. 7.9).



Для полярной ориентации необходимы механизмы вертикальной оси и поворота антенны по углу места, но они используются только один раз, при установке антенны. В дальнейшем переориентирование антенны с одного спутника на другой осуществляется только поворотом вокруг полярной оси.

Поскольку оси вращения Земли и полярная ось в подвеске антенны разнесены в пространстве на расстояние, соизмеримое с радиусом Земли (6366 км) и с радиусом геостационарной орбиты (35 786 км), возникает принципиальная ошибка



способа ориентации (к тому же Земля не имеет идеальную шарообразную форму).

Если зеркало антенны установлено на подвеске так, что главный лепесток диаграммы направленности перпендикулярен полярной оси подвески, то в процессе вращения зеркала относительно полярной оси он будет параллельным плоскости экватора и никогда не пересечет орбиту спутников-ретрансляторов. Для настройки антенны на геостационарную орбиту главный лепесток ДН необходимо опустить на угол a называемый углом склонения (деклинации). Корректирующий угол деклинации рассчитывают по формуле

а = arctg( sinu)/(6,618 -cosu)

где (u — значение географической широты в точке приема. Коррекция положения антенны по углу деклинации является дополнительной и постоянной для данного географического региона (табл. 7.2). Очевидно, что угол а при размещении антенны на полюсе будет максимальным и равным 8°40'. По мере приближения к экватору угол а уменьшается до нуля, если антенна находится в одной меридиональной плоскости со спутником Земли (рис. 7.10).









На ГСО (см. рис. 4.3) положение некоторых спутников обозначено с долями градуса. Например, спутник KOPERNIKUS имеет координаты 23,5°Е (один градус делится на 60 мин, т. е. одна десятая градуса составляет 6 мин). Таким образом, 23,5° необходимо читать как 23°30'.

Если известна координата, выраженная в градусах, минутах и секундах, ее переводят в градусы:

55°42'36" = 55 + 42/60 + 36/3600 = 55,71°.

Все сказанное выше об угле деклинации относится к осесимметричной параболической антенне. Угол ее наклона к горизонту зависит в первую очередь от географической широты места установки антенны (рис. 7.11). Чем севернее место установки антенны, тем меньше будет ее наклон к горизонту. Чем южнее установлена антенна, тем больше будет ее наклон к горизонту. В африканских странах антенны





расположены почти горизонтально. Например, в Конго, где проходит линия экватора, антенна «лежит» горизонтально. Такая чаша собирает попадающие в нее осадки и антенна перестает работать. Поэтому в странах, которые находятся вблизи линии экватора, устанавливают параболические антенны с множеством отверстий на зеркале.

Используются и офсетные антенны, угол наклона которых зависит не только от географической широты, но и от конструкции антенны. Приближенно можно считать, что положение офсетной антенны на территории Республики Беларусь должно быть близко к вертикальному. Для осесимметричной антенны угол склонения лежит в пределах 6...7°.

К месту установки антенны необходимо подвести электропитание, включить ресивер и малогабаритный телевизор. Если антенна установлена на балконе или лоджии, в этом нет необходимости, так как все и так под рукой. Если антенна находится на крыше, туда следует провести удлинитель электросети для подключения ресивера и телевизора. Это необходимо, так как в процессе ориентирования антенны на ИСЗ нужно хорошо видеть экран с места установки антенны.

Если ориентировщиков антенны двое, между ними следует установить временную телефонную связь, а спутниковая аппаратура (ресивер, телевизор) остается в квартире.

Настройка антенны на более качественное изображение не всегда дает необходимый результат. Ряд зарубежных фирм производит индикаторы спутникового сигнала, которые стоят довольно дорого. Однако опытные радиолюбители могут изготовить их самостоятельно.