Введение в экспертные системы

         

Снова о роботах и комнатах




В главе 3 мы уже упоминали об исчислении предикатов в упрощенном виде. Там выражение вида

at(робот, комнатаА)

означало, что робот находится в комнате А. Термы робот и комнатаА в этом выражении представляли собой константы, которые описывали определенные реальные объекты. Но что будет означать выражение вида

at(X, комнатаА) ,

в котором х является переменной? Означает ли оно, что нечто находится в комнате А? Если это так, то говорят, что переменная имеет экзистенциальную подстановку (импорт). А может быть, выражение означает, что все объекты находятся в комнате А? В таком случае переменная имеет универсальную подстановку. Таким образом, отсутствие набора четких правил не позволяет однозначно интерпретировать приведенную формулу.

Перечисленные в этом разделе правила исчисления предикатов обеспечивают однозначную интерпретацию выражений, содержащих переменные.

В частности, фраза

at(X, комнатаА )<—at (X, ящик1) интерпретируется как



"для всех X X находится в комнате А, если X находится в ящике 1". В этой фразе переменная имеет универсальную подстановку. Аналогично, фраза

at(X, комнатаА) <-интерпретируется как "для всех X X находится в комнате А". А вот фраза

<— at(X, комнатаА) интерпретируется как "для всех XX не находится в комнате А".

Иными словами, это не тот случай, когда некоторый объект X находится в комнате А и, следовательно, переменная имеет экзистенциальную подстановку.

Теперь можно преобразовать фразовую форму, в которой позитивные литералы сгруппированы слева от знака стрелки, а негативные — справа. Если фраза в форме

P1, ..., Рт <— q1,...qn содержит переменные х1,..., хk, то правильная интерпретация имеет следующий вид:

для всех x1, ..., хk

p1 или ... или pm является истинным, если q1 и ... и qn являются истинными.

Если п = 0, т.е. отсутствует хотя бы одно условие, то выражение будет интерпретироваться следующим образом:

для всех x1, ..., xk

p1 или ... или рт является истинным.

Если т = 0, т.е. отсутствуют термы заключения, то выражение будет интерпретироваться следующим образом:

для всех x1, ..., xk

не имеет значения, что q1 и ... и qn являются истинными.

Если же т = п = 0, то мы имеем дело с пустой фразой, которая всегда интерпретируется как ложная.



Содержание раздела