Введение в экспертные системы

         

Структура логических связей в системе MYCIN ([Clancey, 1985])



Структура логических связей в системе MYCIN ([Clancey, 1985])




Программа SAGON располагает знаниями о более чем 30 классах анализа. При определении типа анализа, наиболее подходящего для заданной пользователем проблемы, программа использует два этапа эвристического сопоставления, которые аналогичны описанным Кленси. Первый этап — выбор математической модели для оценки напряжений и деформаций при различных условиях, которая учитывает введенную пользователем информацию о геометрии моделируемой конструкции и нагрузках. Второй этап — выбор стратегии анализа этой модели, руководствуясь принципом наихудшего случая распределения напряжений и деформаций.

Оба этапа включают выбор из набора альтернативных вариантов и эвристическое сопоставление различных абстрактных категорий. Этап конкретизация решения отсутствует, поскольку на втором этапе определяются только подходящие классы программ из комплекта MARC, хотя формируемая стратегия анализа включает и рекомендации о выборе специфических функций из числа тех, которые имеются в MARC. В отличие от MYCIN, при сопоставлении не используются коэффициенты уверенности. Это объясняется тем, что за основу принят принцип наихудшего случая, который позволяет давать категоричные рекомендации даже в случае не совсем точного сопоставления.

Кленси обратил также внимание на то, что в большинстве экспертных систем используется не одна, а несколько родовых операций из тех, что представлены на рис. 11.1 и 11.2. В частности, процесс выработки рекомендаций о курсе лечения в системе MYCIN включает мониторинг состояния пациента, диагностирование категории заболевания, идентификацию микроорганизмов и модификацию состояния пациента (или состояния организма). Программа SACON идентифицирует типы структур, предсказывает в терминах математической модели, как такие структуры будут себя вести, и затем идентифицирует подходящий метод анализа.

В своей статье Кленси также проанализировал и систему SOPHIE ([Brown et ai, 1982]), предназначенную для поиска неисправностей в электронных схемах. Программа создавалась как инструмент для проведения исследований в области обучения с использованием компьютера, но включенный в ее состав модуль решения проблем способен классифицировать электронные схемы в терминах компонентов, которые вызывают неправильное функционирование схемы. Заранее пронумерованное пространство решений этого модуля содержит описания дозволенных и ошибочных пар вход/выход.

На рис. 11.5 схематически показано, каким образом структуру логического вывода в системе SOPHIE можно трактовать в качестве примера эвристической классификации. Результаты измерений в различных точках электронной схемы позволяют SOPHIE формировать количественные утверждения о поведении схемы, например о напряжении между двумя точками электрической цепи. Программа затем может преобразовать их в утверждения относительно качества функционирования схемы (например, слишком высокое напряжение), а последние эвристически сопоставляются с отказами на уровне модуля. Таким образом, в терминах задач анализа, представленных на рис. 11.1, можно говорить о том, что в системе SOPHIE выполняется мониторинг состояния схемы и диагностирование отказавших модулей и компонентов.

В системе COMPASS, описанной в предыдущей главе, также используется некоторая форма эвристической классификации как часть процесса декомпозиции проблем. При анализе отказов системы переключений телефонной сети программа сначала разбивает сообщения об ошибках на группы. Это можно рассматривать как этап формирования абстрактной категории данных в соответствии с методикой Кленси. Во-первых, такое разбиение необходимо, поскольку для идентификации отказа недостаточно единственного сообщения, а во-вторых, разбиение возможно, поскольку существует эвристика, позволяющая сопоставлять отказы с набором сообщений определенных групп. Но в этой системе можно найти и аналог этапа конкретизации, на котором устраняются неопределенности, остающиеся после группирования. Без неявной абстракции данных на этапе группирования не удалось бы сопоставить сообщения и отказы, а без последующего этапа конкретизации рекомендации, которые формирует система, были бы слишком расплывчаты и неконкретны.

Ценность предложенной Кленси методики анализа заключается в том, что она непосредственна связана с поиском ответов на сформулированные в начале этой главы вопросы. В частности, эта методика позволяет определить базовый метод решения проблем, который может быть с успехом применен в различных предметных областях. В следующей главе мы попытаемся четче обозначить различие между эвристической классификацией и другими методами и выделим тот класс проблем, по отношению к которым применение эвристической классификации наиболее целесообразно.











Содержание раздела