Обучающая выборка примеров Экземпляр
Страна-изготовитель
|
Размер
|
Старая модель
|
Позитивный/ негативный
|
|
|
Oldsmobile Cutlass
|
США
|
Большой
|
Нет
|
Негативный
|
|
|
BMW 31 6
|
Германия
|
Малый
|
Нет
|
Позитивный
|
|
|
Thunderbird Raodster
|
США
|
Малый
|
Да
|
Негативный
|
|
|
VW Cabriolet
|
Германия
|
Малый
|
Нет
|
Позитивный
|
|
|
Rolls Royce Corniche
|
Великобритания
|
Большой
|
Да
|
Негативный
|
|
|
Chevrolet Bel Air
|
США
|
Малый
|
Да
|
Негативный
|
|
|
|
|
|
|
|
|
Предположим, что концепт, которому мы хотим обучить программу, это Немецкий автомобиль. Тогда позитивными экземплярами для этого концепта будут BMW 316 и VW Cabriolet, а остальные— негативными. Если же целевой концепт— Американский автомобиль старой марки, то позитивными экземплярами будут Thunderbird Raodster и Chevrolet Bel Air, а остальные — негативными.
Очень существенно предъявлять программе и позитивные, и негативные экземпляры. В первой из рассмотренных выше задач и BMW 316, и VW Cabriolet являются малыми автомобилями, поэтому если программе не представить в качестве негативного экземпляра Chevrolet Bel Air, то она может сделать вывод, что концепт Немецкий автомобиль совпадает с концептом Малый автомобиль. Аналогично, если во второй задаче не будет представлен негативный экземпляр Oldsmobile Cutlass, то программа может посчитать концепт Американский автомобиль старой марки совпадающим с более общим концептом Американский автомобиль.
С формальной точки зрения любое множество данных, в котором выделены положительные и отрицательные экземпляры, можно считать обучающей выборкой для индуктивной программы обучения. В обучающей выборке также нужно специфицировать некоторый набор атрибутов, имеющих отношение к обучаемым концептам, а запись каждого экземпляра должна содержать значения этих атрибутов. В табл. 20.1 представлены значения атрибутов обучающей выборки для концепта Немецкий автомобиль.
Другая задача обучения получила наименование обобщение дескрипторов (descriptive generalization). Формулируется задача следующим образом: программе обучения предъявляется набор экземпляров некоторого класса объектов (т.е. представляющих некоторый концепт), а программа должна сформировать описание, которое позволит идентифицировать (распознавать) любые объекты этого класса. Пусть, например, обучающая выборка имеет вид
{Cadillac Seville, Oldsmobile Cutlass, Lincoln Continental},
причем каждый экземпляр выборки имеет атрибуты размер, уровень комфорта и расход топлива. Тогда в результате выполнения задачи обобщения дескрипторов программа сформирует описание, представляющее набор значений дескрипторов, характерный для данного класса объектов:
{большой, комфортабельный, прожорливый}.
Отличие между задачами обучение концептам и обобщение дескрипторов состоит в следующем:
- задача обучения концептам предполагает включение в обучающую выборку как позитивных, так и негативных экземпляров некоторого заранее заданного набора концептов, а в процессе выполнения задачи будет сформировано правило, позволяющее затем программе распознавать ранее неизвестные экземпляры концепта;
- задача обобщения дескрипторов предполагает включение в обучающую выборку только экземпляров определенного класса, а в процессе выполнения задачи создается наиболее компактный вариант описания из всех, которые подходят к каждому из предъявленных экземпляров.
Обе задачи относятся к классу методик, который мы назвали супервизорным обучением, поскольку в распоряжении программы имеется и специально подготовленная обучающая выборка, и пространство атрибутов.
В следующем разделе мы рассмотрим две программы обучения, которые разработаны в связи с созданием экспертной системы DENDRAL. Первый вариант реализации программы обучения нельзя отнести ни к одной из перечисленных выше категорий, но второй вариант использовал методику, которую мы сейчас можем отнести к категории "индуктивное обучение". В оригинальном описании программы авторы назвали ее version space (пространство версий). Постановка задачи очень напоминает обучение концептам, поскольку предусматривает включение в обучающую выборку позитивных и негативных экземпляров концепта.
Интересно сравнить оба варианта системы и выяснить, как знания, специфичные для определенной предметной области (в данном случае, химии), могут быть использованы алгоритмом обучения, независящим от предметной области.
В разделе 20.3 описана современная программа индуктивного обучения, на примере которой будет продемонстрировано, как формируются правила для экспертных систем. В разделе 20.4 мы затронем вопрос настройки отдельных правил и набора связанных правил.
Содержание раздела