Введение в экспертные системы

         

Рассуждения, основанные на прецедентах



Рассуждения, основанные на прецедентах


  1. 22.1. База прецедентов
  2. 22.2. Обучение с помощью компьютера: система САТО
  3. 22.3. Формирование отчетов в системе FRANK
  4. 22.4. Сравнение систем, основанных на правилах и прецедентах
  5. Рекомендуемая литература
  6. Упражнения


В главе 2 мы отмечали, что в ранних программах искусственного интеллекта отчетливо прослеживалась тенденция использовать по возможности единообразные методы решения проблем. Логические рассуждения строились на основе небольшого количества предположений или аксиом, а множество правил, применяемых для формирования нового состояния проблемы, также было невелико. Такие классические области искусственного интеллекта, как игры и доказательство теорем, являются формальными системами, которые по самой своей сути годятся для подобной комбинации логического анализа и эвристического поиска. Хотя в подавляющем большинстве экспертных систем применяется большое количество правил, специфичных для определенной предметной области, и используются разнообразные методы решения проблем, способы поиска и организации логического вывода, по сути, не очень отличаются от тех, что использовались в ранних программах искусственного интеллекта.

Например, в процессе работы производящей системы представление состояния проблемы в рабочей памяти последовательно изменяется, все более приближаясь к состоянию, характеризующему искомое решение. Такой пошаговый процесс очень напоминает последовательность ходов, дозволенных правилами игры, а отличие заключается в основном в семантике используемых правил. Программа игры в шахматы, основанная на знаниях, должна опираться не только на правила выполнения ходов, но и на информацию о стратегии, типовых ситуациях на доске, способах распознавания стадий игры (дебют, миттельшпиль или эндшпиль) и т.д.

Существует, однако, множество рутинных задач, выполняемых человеком, которые не вписываются в эту парадигму. Трудно себе представить, что, решая задачу, куда пойти сегодня вечером (в какой ресторан или кинотеатр), человек сознательно или подсознательно выполняет логический анализ или эвристический поиск. Если обратиться к менее тривиальным примерам, то также трудно поверить, будто судья, архитектор или ваш шеф, принимая решение, всегда прибегают к логическому анализу. Скорее всего, в большинстве случаев в основе наших действий в повседневных ситуациях лежит другой механизм рассуждений и принятия решения.

В отличие от большинства машин, человек почти всегда чем-то занят или озабочен, а потому при решении повседневных проблем уже на подсознательном уровне стремится сэкономить время и силы. И здесь на помощь всегда приходят память и прежний опыт — для человека проще распознать ситуацию и найти для нее аналог, чем заново формировать решение.

Но как все это можно реализовать в компьютерной модели рассуждений? Мы уже знаем, что воспоминания и приобретенный опыт не так просто свести к набору правил, но можно представить себе некоторую "библиотеку" ситуаций, встречавшихся в прошлом, которые имеют отношение к возникшей проблеме, например "репертуар" указаний шефа, или судебные решения, принятые в прошлом по аналогичным делам, или наброски архитектурных планов для сооружений аналогичного назначения и т.п. Естественно, что такая библиотека должна быть индексирована каким-то разумным способом, чтобы в массиве хранящихся описаний ситуаций можно было довольно быстро распознать аналогичную текущей. Кроме того, понадобится также и некоторый механизм, который позволит адаптировать ранее принятое решение к новой проблеме (текущей ситуации).

Описанный подход получил наименование рассуждение, основанное на прецедентах (case-based reasoning). Мы рассмотрим эту новую технологию на трех примерах, взятых из разных предметных областей, — кулинарии, юриспруденции и делопроизводства. После этого мы вновь вернемся к сравнению рассуждений, основанных на прецедентах, с более привычной технологией логического вывода в экспертных системах и покажем, что эти технологии не противоречат, а дополняют друг друга. В главе 23 этот тезис будет подкреплен примерами и дальнейшим анализом.









Содержание раздела