Поскольку веса С-связей могут регулироваться системой в процессе работы, она способна таким образом самообучаться в соответствии с информацией, вводимой пользователем. Ниже мы опишем, как это делается в системе SCALIR, опуская несущественные детали.
Предположим, что один из входов узла i связан с выходом узла j, причем связь имеет вес Wij. Если узел i представляет документ, имеющий отношение к термину, представленному узлом j, то в процессе обучения нам может потребоваться усилить эту связь. Если же пользователь посчитает, что документ имеет мало общего с этим термином, то потребуется ослабить эту связь. Главный вопрос, который нужно при этом решить, — в какой степени нужно менять значение веса. Одно из простых правил вычисления значения изменения веса Wij может быть выражено формулой
Wi = nfiaj,
где n| — константа скорости обучения (learning rate), a fi — коэффициент обратной связи от пользователя, который, например, может принимать значение +1 или—1.
Однако применение такого правила не настолько очевидно, как это может показаться с первого взгляда, по следующим причинам.
Определить значения уровня активности а, не так просто, поскольку активизированный при возникновении запроса входной узел может снизить свою активность после того, как запрос будет снят.
Соседи узлов, которые получают обратную связь, также должны, по-видимому, получать некоторую информацию обратной связи от пользователя, подтверждающую, что они представляют документы, имеющие отношение к запросу.
Узел i может находиться в конце сети распространения активности, а следовательно, информация от пользователя (обратная связь) должна распространяться по сети в обратном направлении.
Таким образом, получаемая от пользователя информация обратной связи должна распространяться по сети примерно так же, как активность. Максимальное значение обратной связи для каждого узла записывается и обновляется в процессе распространения, и эти значения в дальнейшем играют роль членов fi и аj в приведенном выше выражении. Далее полученные значения весов нормализуются таким образом, чтобы их сумма для каждого отдельного узла была равна 1.0.
Конечно, в реальной системе SCALIR процесс самообучения несколько сложнее, поскольку в ней существуют связи разных типов. Читателям, интересующимся деталями этого процесса, следует познакомиться с работой [Rose, 1994], Но идея комбинированного использования символических и субсимволических методов заслуживает дальнейшего углубленного изучения. В системе SCALIR продемонстрирован довольно прагматический компромисс между чисто статистическим подходом к извлечению информации и традиционным подходом для экспертных систем, требующим большого объема знаний о предметной области.